ISPITIVANJE COMMON RAIL KOMPONENTI NA PLATFORMI HARTRIDGE CRI-PC

Tržok, Matija

Undergraduate thesis / Završni rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Karlovac University of Applied Sciences / Veleučilište u Karlovcu

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:128:179413

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-12

Repository / Repozitorij:

Repository of Karlovac University of Applied Sciences - Institutional Repository

VELEUČILIŠTE U KARLOVCU STROJARSKI ODJEL Stručni studij Mehatronike

Matija Tržok

ISPITIVANJE COMMON RAIL KOMPONENTI NA PLATFORMI HARTRIDGE CRI-PC

Završni rad

Mentor: BORIS OŽANIĆ

Karlovac, 2020.godina.

KARLOVAC POLYTECHNIC MECHANICAL ENGINEERING Department of Mechatronics

Matija Tržok

TESTING COMMON RAIL COMPONENTS ON A PLATFORM HARTRIDGE CRi-PC

Final work

Mentor: BORIS OŽANIĆ

Karlovac, 2020. godina.

Izjavljujem da sam ovaj rad izradio samostalno koristeći stečena znanja tijekom studija i navedenu literaturu.

Zahvaljujem se

Matija Tržok

Ime i prezime	Matija Tržok				
OIB / JMBG					
Adresa					
Tel. / Mob./e-mail					
Matični broj studenta	0112608011				
JMBAG					
Studij (staviti znak X ispred odgovarajućeg studija)		X	preo	ddiplomski	specijalis tički diplomsk i
Naziv studija	Veleučilište u Karlovcu				
Godina upisa	2008.	-			
Datum podnošenja molbe	31.08.2020.				
Vlastoručni potpis studenta/studentice]			

Naslov teme na hrvatskom: Ispitivanje common	rail komponenti na platformi Hartridge CRi-Pc
Naslov teme na engleskom: Testing Common rai	l components on a platform Hartridge CRi-Pc
Opis zadatka: Opisati proces rada ispitivanja cor sustava za ispitivanje common rail komponenti.	nmon rail komponenti. Upoznati rad i princip rada Provjera uređaja prije ispitivanja.
Mentor:	Predsjednik Ispitnog povjerenstva:

SADRŽAJ

SADRŽAJ 1
POPIS SLIKA
SAŽETAK4
SUMMARY
1. UVOD
2. PRINCIP RADA UREĐAJA ZA ISPITIVANJE I KOMPONENTI COMMON RAIL SUSTAVA UBRIZGAVANJA
 2.1. Princip rada Common rail injektora
3. ISPITIVANJE I KODIRANJE COMMON RAIL INJEKTORA
 3.1. Priprema common rail injektora za ispitivanje
ZAKLJUČAK
LITERATURA

Slika 1 Uređaj Hartridge CRi-PC	6
Slika 2 Princip rada injektora	8
Slika 3 Graf 1	9
Slika 4 Graf 2	9
Slika 5 Graf 3	10
Slika 6 Konstrukcija injektora	.10
Slika 7 Učvrščivać injektora	. 11
Slika 8 Zračna pumpa za ulje	.12
Slika 9 Jedinica za stvaranje podtlaka	.12
Slika 10 Sigurnosni ispušni ventil	13
Slika 11 Visokotlačna pumpa	.14
Slika 12 Mjerna jedinica isporuke injektora	.14
Slika 13 Upravljačka ploča	.15
Slika 14 Upravljačke tipke	16
Slika 15 Računalo	16
Slika 16 Čisti spremnik	16
Slika 17 Ekran	16
Slika 18 Mjerna jedinica povrata	17
Slika 19 Zajednička cijev (Common rail)	.17
Slika 20 Shema rastavljenog injektora	18
Slika 21 Demontaža bakrene podloške	. 19
Slika 22 Demontaža držača sapnice	19
Slika 23 Demontaža sapnice	. 19
Slika 24 Demontaža ventila povrata	19
Slika 25 Demontaža elektro-magneta	.20
Slika 26 Mierenie istrošenosti dosieda ventila	.20
Slika 27 Ultrazvučni čistaći	.20
Slika 28 Ispitivanje hoda kugle ventila	.21
Slika 29 Odabir proizvođača	.22
Slika 30 Odabir načina ispitivanja	22
Slika 31 Odabir kataloškog broja	22
Slika 32 Proviera curenja goriva	23
Slika 33 Odzračivanje sustava	.23
Slika 34 Statički povrat	.24
Slika 35 Puno opterećenie	.24
Slika 36 Srednie opterećenie	25
Slika 37 Malo opterećenie	.25
Slika 38 Predubrizgavanie	26
Slika 39 Neispravan magnet	.27
Slika 40 Ispravan magnet	.27
Slika 41 Mierenie snage piezo magneta	.27
Slika 42 Siemens injektor na ispitnom uređaju	.28
Slika 43 Početni zaslon programa IRIS	.29
Slika 44 Zaslon odabir kataloškog broja injektora	30
Slika 45 Zaslon mjerenja otpornosti magneta	31
Slika 46 Zaslon ispis konačnog rezultata ispitivania(ispravan kod)	.32
Slika 47 Graf Dijagnostičkog testa	32
Slika 48 Dijagnostički test – kod neispravan	33
V-lev Vilitte v V-mlever Cturingelie diel	

Matija Tržok	Završni rad
Slika 49 Graf prije korekcije	
Slika 50 Graf nakon korekcije	

Ovaj završni rad sastoji se od dvije cjeline. U teoretskom dijelu objasniti ćemo sam princip rada uređaja za ispitivanje common rail komponenti, ali i sam princip rada common rail injektora. Nakon toga govoriti ćemo o samom ispitivanju common rail injektora. Objašnjavanjem ispitivanja common rail injektora prelazimo na hardverski i softverski alat pomoću kojeg ispitujemo i podešavamo injektor. U eksperimentalnom dijelu praktičnim primjerom prikazati ćemo rad Hartridge CRi-PC uređaja na softveru Magmah i IRIS.

Ključne riječi: common rail, injektor, Hartridge, IRIS

This final paper consists of two parts. In the theoretical part, we will explain the principle of operation of operation of devices for testing common rail components, but also the principle of operation of common rail injectors. After that, we will talk about the test of common rail injectors. By explaining the common rail injector test, we move on to the hardware and software tool with which we test and adjust the injector. In the experimental part, we will show the operation of Hartridge CRi-PC devices on IRIS and Magmah software with a practical example. Keywords: common rail, injector, Hartridge, IRIS

1. UVOD

Modernizacijom sustava ubrizgavanja goriva kod vozila modernizirali su se i uređaji kojima ispitujemo i podešavamo komponente koje izvršavaju samo ubrizgavanje goriva, a to su common rail injektori. Oprema koju ćemo upoznati kroz ovaj rad je od proizvođača Hartridge iz Velike Britanije koji se već dugi niz godina bavi proizvođnjom opreme za ispitivanje i podešavanje pumpi i sapnica. Posebnost ovog uređaja je ta šta je omogućeno ispitivanje svih vrsta i proizvođača common rail komponenti od Boscha pa do Delphia, Densa i Siemensa. Prednost ovoga uređaja je i ta šta se više ne koristi zastarjela metoda mjerenja količine goriva putem menzura i očitavaju vrijednosti prostim okom već uređaj ima visoko precizne piezo senzore koji očitavaju vrijednost i ispisuju ju na ekranu, time je omogućena potpuno precizna kalibracija common rail komponenti kojom se postiže smanjenje potrošnje goriva u nekom manjem postotku, ali uvelike se smanjuje ispuštanje CO2 u okoliš.

Glavne karakteristike stroja su: upravljanje pomoću Iris i Magmah softwera i korisničkog sučelja, manualne i automatske operacije, omogućeno je i ručno kretanje kroz sve faze ispitivanja ili puštanje automatskog testa gdje uređaj sam provodi sve zadane testove. Postoji mogućnost kreiranja, editiranja i spremanja ispitnih lista, poluautomatski prihvat injektora, simuliraju se uvjeti kao da je injektor montiran u glavi motora, te postoji mogućnost kodiranja injektora. Stroj omogućuje mjerenje količine ubrizgavanja injektora, mjerenje otpora zavojnice injektora, mjerenje vremena odaziva injektora, mjerenje protoka i temperature povrata.

Slika 1 Uređaj Hartridge CRi-PC

2. PRINCIP RADA UREĐAJA ZA ISPITIVANJE I KOMPONENTI COMMON RAIL SUSTAVA UBRIZGAVANJA

2.1. Princip rada Common rail injektora

Za vrijeme isporuke goriva iz pumpe visokog pritiska tokom rada motora, funkcije injektora se mogu podijeliti u 4 radna stanja.

- Injektor zatvoren (sa dovedenim visokim pritiskom)
- Injektor otvara (početak isporuke)
- Injektor potpuno otvoren
- Injektor zatvara (kraj ubrizgavanja)

U stanju mirovanja magnetni ventil je zatvoren. Kad je odvodna prigušnica zatvorena, kugla kotve je posredstvom sile opruge ventila pritisnuta na sjedište prigušnice za oticanje. U upravljačkom prostoru ventila formira se visoki pritisak Rail-a. Isti pritisak uspostavlja se i u komori sapnice. Sila koja djeluje na prednju površinu upravljačkog klipa, a koja je izazvana pritiskom u Rail-u, i sila opruge sapnice drže iglu u zatvorenom položaju, tj. suprostavljaju se sili otvaranja koja djeluje na bočni dio igle sapnice.

Injektor se nalazi u stanju mirovanja. Magnetni ventil je tada upravljan strujom privlačenja, koja služi za brzo otvaranje magnetnog ventila. Sila u elektromagnetima, na kojima je upravo izvršeno upravljanje, savladava silu opruge ventila i kotva otvara prigušnicu za istjecanje. Povišena struja privlačenja se u najkraćem vremenu reducira na manju struju držanja elektromagneta. Ovo je moguće s obzirom da je zračni prostor magnetnog kruga manji. Sa otvaranjem odvodne prigušnice gorivu je omogućeno da iz upravljačkog prostora ventila kroz gornju šupljinu i povratni priključak istječe u rezervoar goriva. Dovodna prigušnica sprječava potpuno izjednačenje pritiska i pritisak u upravljačkom prostoru ventila se smanjuje. Ovo dovodi do toga da je pritisak u upravljačkom prostoru ventila manji od pritiska u komori sapnice, u kojoj je još uvijek nivo tlaka iz Rail-a. Smanjeni pritisak u upravljačkom prostoru ventila ima za posljedicu smanjenje sile na upravljačkom klipu i dovodi do otvaranja igle sapnice. Ubrizgavanje započinje.

Brzina otvaranja igle brizgaljke određuje se razlikom protoka kroz dovodnu i odvodnu prigušnicu. Upravljački klip dospijeva na svoj gornji graničnik i zaustavlja se na jastuku goriva. Jastuk goriva se uspostavlja uslijed strujanja goriva između dovodne i odvodne prigušnice. Sapnica injektora je sada potpuno otvorena i gorivo se pod pritiskom koji približno odgovara pritisku u Rail-u ubrizgava u prostor za sagorijevanje. Raspodjela sila u injektoru je slična raspodijeli sila tokom faze otvaranja.

Kad magnetni ventil više nije pod djelovanjem upravljanja, tada kotva, posredovanjem ventilske opruge ,bude pritisnuta na dolje i kugla zatvori odvodnu prigušnicu. Kotva je izvedena dvodijelno. Ploča kotve se na dolje vodi pomoću jednog prihvatača, a pošto višak njenog hoda preuzima povratna opruga, time je spriječeno djelovanje njene sile na kotvu i kuglu.

Usred zatvaranja odvodne prigušnice u upravljačkom prostoru se preko dotoka kroz dovodnu prigušnicu ponovo uspostavlja isti tlak kao u Rail-u. Ovaj povišeni tlak djeluje povećanom silom na upravljački klip. Sila iz upravljačkog prostora ventila i sila opruge zajedno savladavaju silu koja vlada u komori i igla sapnice se zatvara.

Brzina zatvaranja igle sapnice određena je protokom kroz dovodnu prigušnicu. Ubrizgavanje se završava kad igla sapnice ponovo dođe na svoj donji graničnik.

Slika 2 Princip rada injektora

Količina isporučenog goriva proporcionalna je trajanju impulsa (širina impulsa), i primijenjenom tlaku, kao što je prikazano na slici 3. Tipične širine impulsa su u raspon od 200

do 2000µs. Postoji minimalni tlak ispod kojeg injektor neće biti otvoren a to je obično oko 200 bara.

Slika 3 Graf 1

Solenoidni ventili

To su elektromagnetski ventili zavojnice. Na slici 4 prikazana je shema pogonskog signala(prikaz trenutnog vremena). Za prvo otvaranje postoji viša "vučna struja" (Ip)ventila, nakon čega slijedi niža "struja zadržavanja" (Ih) kako bi ventil bio otvoren. Ukupna širina pulsa(T) je kombinirana širina faza povlačenja i zadržavanja. Ograničena je maksimalna granica vučna struja za zaštitu solenoida. Brizgaljke s magnetnim ventilima trenutno proizvode Bosch, Delphi i Denso. Svaki od ovih proizvođača koristi drugačiju specifikaciju za radni napon i struju.

Slika 4 Graf 2

Piezo ventili

Za njih se koriste svojstva piezo kristala (koje odbijaju s primijenjenim naponom) kako bi se aktivirali ventili. Za uključivanje ventila postoji pozitivni impuls struje (I), a negativan strujni impuls za isključenje ventila. Ukupna širina pulsa (T) je vrijeme između pozitivnih i negativnih impulsa struje.

Slika 5 Graf 3

2.2. Konstrukcija Common rail injektora

- 1 Igla sapnice
- 2 Predprostor sapnice
- 3 Opruga
- 4 Upravljački prostor
- 5 Ventil s kugličnim sjedištem
- 6 Opruga
- 7 Povratni vod
- 8 Svitak magneta
- 9 Dovod goriva

Slika 6 Konstrukcija injektora

2.3. Princip rada uređaja za ispitivanje i podešavanje Hartridge CRi-PC

Ispitni uređaj za common rail injektore (CRi-PC) dizajniran je tako da omogućava ispitivanje svih vrsti common rail injektora. Ispitni uređaj se sastoji od poluautomatsko stezne glave mlaznica, koje je pogodno za brizgalice do 9000N opterećenja na stezaljci po injektoru. Zato ima sigurnosna vrata opremljena 10 mm čistim PVC štitom koji štiti operatera od visokih pritisaka stvorenih u common rail-u. Injektori se mogu testirati u ručnom ili automatskom načinu unaprijed konfiguriranim testnim planovima stvorenim u sustavu softver IRIS i Hartridge TM Magmahi. Imamo mjernu jedinicu koja mjeri predanu količinu goriva u sustav ubrizgavanja te mjernu jedinicu povrata viška goriva koje se isto mjeri i prikazuje na ekranu.

Sam uređaj u sebi sadrži i spremnik ispitnog ulja kapaciteta 40 litara te čistog rezervoara od 3 litre. Uljna pumpa zračno pogonjena prepumpava ispitno ulje kroz sustav filtera do čistog spremnika. Kompletan sustav ispitnog ulja je vodeno hlađen kako bi se održala temperatura ispitnog ulja konstantnom.

Pneumatski krug obavlja 4 funkcije:

• Stezanje injektora za ispitivanje u učvršćivač. Solenoidni ventili kontroliraju protok zraka do dva dvostruka djelujuća cilindra. Opterećenje na stezaljkama kontroliraju razmaknici i stožaste opruge.

Slika 7 Učvrščivać injektora

• Prepumpavanje ulja. Zračna pumpa premješta ulje iz glavnog spremnika kroz filtere u "čisti" spremnik. Brzina protoka ulja može se regulirati regulatorom protoka zraka.

Slika 8 Zračna pumpa za ulje

• Povratni tlak mjerne jedinice. Zrak se dovodi u dozirnu jedinicu za stvaranje, a povratni pritisak na klip kako bi se ispustio ulje iz jedinice i osigurao povratni pritisak ulja.

Slika 9 Jedinica za stvaranje podtlaka

 Sigurnosni ispušni ventil visokog pritiska. Zrak se dovodi preko zasebnog regulatora koji je postavljen i nemoguće ga je mijenjati. Time se kontrolira maksimalni tlak u visokom tlaku hidrauličkog kruga. Ako se otvore sigurnosna vrata za vrijeme ispitivanja, solenoid ventil se isključuje i visoki tlak se odbacuje.

Slika 10 Sigurnosni ispušni ventil

Sustav tekućine se sastoji od spremnika koji sadrži element, a to su: električni grijač kojim upravlja računalo te od senzora razine tekućine koji sprječava nisku razinu tekućine koja je izložena grijaču i samim time postoji opasnost od požara ako padne ispod razine grijača. Zatim još imamo zračnu pumpu koja premješta ulje kroz filter od 2 mikrona u "čisti" spremnik (nazivnog kapacitet 3 litara). Ispitna tekućina se usisava iz čistog spremnika u visokotlačnu pumpu i višak se vraća u glavni spremnik. Čisti spremnik sadrži temperaturni senzor za mjerenje i kontroliranje temperature ispitne tekućine i drugi prekidač razine kako bi se osiguralo da visokotlačnu pumpa ne ostane bez ispitne tekućine.

Visokotlačnu pumpu izravno pokreće električni motor fiksne brzine. Pritisak na šinu postavlja se sa VCV ventilom (ventil za regulaciju volumena) koji je sastavni dio pumpe i PCV ventilom (ventil za kontrolu tlaka) koji je postavljen na šinu i upravljan upravljačkim sustavom . Protok iz visokotlačne pumpe i šine prolazi kroz topline ploče koje putem vode hlade ispitnu tekućinu koja se tako ohlađena vraća u glavni spremnik. Protok vode kontrolira solenoid ventil po potrebi. Dozirna jedinica ima neovisan sustav za hlađenje vodom od strane dozirne ploče.

Slika 11 Visokotlačna pumpa

Sustav za mjerenje isporuke injektora sastoji se od mjerne jedinice i kontrolne ploče za doziranje. Sustav za mjerenje protoka povrata injektora sastoji se od mjerene jedinice protoka povrata kojim upravlja upravljačka ploča. Elektromagnetski ventil preusmjerava povratni protok u mjernu cijev, gdje senzor očitava protok povrata i pretvara u podatak očitanja protoka. Nakon očitanja elektromagnetski ventil propušta povrat iz mjerne cijevi u glavni spremnik.

Slika 12 Mjerna jedinica isporuke injektora

2.4. Konstrukcija uređaja za ispitivanje common rail komponenti

Ispitni uređaj CRi-PC osmišljen je kako bi omogućio ispitivanje common rail komponenti različitih proizvođača, a trenutno je na ovom uređaju moguće ispitivati injektore sljedećih proizvođača: Bosch, Siemens, Denso i Delphi.

Uređaj se sastoji od:

- Računala Pc
- Upravljačke ploče
- Ekran
- Upravljačke tipke
- Sigurnosna vrata
- Elektro motor
- Visokotlačna pumpa
- Zajednička cijevi (common rail)
- Mjerne jedinice dobave
- Mjerne jedinice povrata
- Glavnog spremika
- Čistog spremnika

Slika 13 Upravljačka ploča

Putem PC računala korisnik upravlja sa upravljačkom pločom i tako pokreće željene funkcije na ispitnom uređaju. Na PC računalu odnosno na ekranu korisnik može pratiti temperaturu ispitnog ulja, vrijeme rada ispitnog uređaja, vrijeme od zadnje zamjene filtara za filtraciju ispitnog uređaja. Putem PC-a se i pokreću ažuriranja te usnimavanja novih ispitnih planova.

Slika 15 Računalo

Slika 14 Upravljačke tipke

Na upravljačkim tipkama se nalazi tipka za zatezanje/otpuštanje injektora iz zatezača, zatim tipka za pokretanje/zaustavljanje elektromotora koji pokreče visokotlačnu pumpu. Zadnje je sigurnosna tipka za prisilno zaustavljanje uređaja za testiranje.

Slika 17 Ekran

Slika 16 Čisti spremnik

Slika 18 Mjerna jedinica povrata

Mjerna jedinica povrata korisniku daje informaciju o količini protoka povrata testiranog injektora koji je u svakom ispitnom planu propisan za svaki testirani režim rada injektora.

Zajednička cijev omogućuje konstantnu dobavu tlaka ispitnog ulja potrebnog injektoru tijekom

ispitivanja.

Slika 19 Zajednička cijev (Common rail)

3. ISPITIVANJE I KODIRANJE COMMON RAIL INJEKTORA

3.1. Priprema common rail injektora za ispitivanje

Prilikom svakog ispitivanja injektora, svaki je injektor potrebno rastaviti i vizualno provjeriti neke komponente kao što su valjak za podešavanje, sapnica i ventil povrata. Ako se nakon vizualne kontrole utvrdi da su sve komponente cijele i da nije došlo do nikakvog oštećenja slijedi faza čišćenja u ultrazvučnom čistaću gdje se nalazi specijalna tekućina i koja se zagrijava na 60 °C. Nakon čišćenja dijelova slijedi faza sastavljanja injektora te osnovnog podešavanja. I zadnja faza je ispitivanje i kodiranje injektora.

- 2 Valjak za podešavanje
- 4 Ventil povrata
- 7 Sapnica

Slika 20 Shema rastavljenog injektora

Postupak pripreme injektora je sljedeći, prvo je potrebno demontirati bakrenu podlošku zatim demontirati držač sapnice kako bi se mogla demontirati sapnica injektora i ventil povrata. Zatim slijedi demontaža opruge ventila povrata i elektro-magneta. Nakon demontaže elektro-magneta potrebno je iskontrolirati istrošenost dosjeda elektro-magneta. Kada su svi dijelovi rastavljeni slijedi čišćenje u ultrazvučnom čistaću.

Slika 22 Demontaža držača sapnice

Slika 21 Demontaža bakrene podloške

Slika 24 Demontaža ventila povrata

Slika 23 Demontaža sapnice

Slika 25 Demontaža elektro-magneta

Slika 26 Mjerenje istrošenosti dosjeda ventila

Slika 27 Ultrazvučni čistaći

Nakon čišćenja svih dijelova u ultrazvučnom čistaću potrebno je isušiti sa koprimiranim zrakom sve dijelove te slijedi sastavljanje injektora. Montaža elektro-magneta u kućište injektora, montaža ventila povrata i sapnice injektora. Nakon toga montaža držača sapnice i zatezanje na propisani moment pomoću moment ključa. Kada je injektor kompletno sastavljen takav je spreman za ispitivanje.

3.2. Ispitivanje Bosch common rail injektora

Prije samog ispitivanja Bosch injektora na ispitnom uređaju potrebno je provjeriti samu ispravnost elektro-magneta injektora, tj. ispituje se hod kugle ventila. Princip je sljedeći, na elektro-magnet se putem specijaliziranog uređaja pusti određeni napon koji aktivira elektro-magnet u kojemu se nalazi opruga koja dopusti kugli ventila da odskoči od sjedišta, taj pomak se mjeri i propisan je od proizvođača injektora. Ako je taj pomak u propisanim vrijednostima znači da je elektro-magnet ispravan i da se može pristupiti ispitivanju injektora na ispitnom uređaju.

Slika 28 Ispitivanje hoda kugle ventila

Nakon montaže injektora na ispitni uređaj pristupa se programu Magmah u kojemu je na početnom zaslonu potrebno odabrati proizvođača injektora i kataloški broj injektora kako bi uređaj odabrao ispitnu listu za odabrani injektor koji se ispituje. Na samom početku moguće je odabrati automatski ili ručni način ispitivanja injektora. Na automatskom načinu uređaj sam provede sve korake ispitivanja koji su zadani ispitnom listom dok je kod ručnog načina moguće ispitati samo određene korake koje korisnik želi ispitati.

	Injector Part Number	044511
	Injector 1	
Manufacturer/Type		
Bosch		-
Bosch	4	
Bosch Piezo		
Cummins		
Delphi Delphi Smart		
Denso		
Denso Piezo Scania		
Siemens		
Skip Resistar	nce Test	
E Skip Auto Ab		
РОК		

Slika 29 Odabir proizvođača

		C
		magmah
nmon Rail Injector Start Test		
Operat	or Name	
Custo	mer Ref	
Injector Part	Number 0445110	
Bosch	Ţ	
Bosch	-	
Injector Type		
Bosch Example 1	· ·	Edit
Testplan / Part Number		
0445110002 HART.CPF	-	Export Testplan
Manual Test		
Automatic Test		
Automatic Test		
Automatic Test		

Slika 30 Odabir načina ispitivanja

	ector Part Number 04451
	Injector 1
Manufacturer/Type	
Bosch	-
Injector Type	
Bosch Example 1	-
Testplan / Part Number	
0445110002.HART.CPF	-
0445110002.HART.CPF 0445110008.HART.CPF 0445110009.HART.CPF 0445110010.HART.CPF 0445110011.HART.CPF 0445110012.HART.CPF 0445110014.HART.CPF	- N
ок	

Slika 31 Odabir kataloškog broja

Slijedi pokretanje ispitivanja injektora, Prvi korak ispitivanja je provjera curenja sustava gdje uređaj postavi početni tlak ispitnog ulja na 400 bara i korisnik provjeri dali dolazi do curenja. Ako je sve uredu prelazi se na sljedeći korak, a to je odzračivanje sustava gdje je zadani tlak 800 bara, a visina impulsa na magnetu 1000 milisekundi. U tom koraku je potrebno da ispitno ulje procirkulira cijelim sustavom uređaja kako ne bih došlo do krivog očitanja dobave i povrata injektora.

Filename 0446110250.HART_2402_PEUGEOT 407_20171204_1 DISCLAIMER: This data is provided for indication only. it is the response	125837	the operator	Resu	ilts V	iewer		Charb	
to validate any test data. Hartridge DOES NOT accept any liability for	or the use o	this data.	magmah	1	12.46			
Testplan 0445110258.HART.CPF						ply Temp		
Type Bosch Solenoid					Rail	Pressure		
HW BOSCA CROB								
Teststep 1 / 8 System Leak Check				Min	Max	Value		
Test Comments / Instructions		_						
Check setup for leaks before continuing			Supply Temp			40.6	°C	
			Resistance				Ω	
Customer Ref PEUG	IJA GEOT 407		Rail Pressure			401	ber	
Serial No 2482 Test Date 04/12	2/2017		Response Time			-1	μS	
Test Time 12:50	1:37	2333	Response Variation			0	μS	
Results Comments 7		11.1.1.1	Back Leak Flow			0.00	mm3/st	
	_		Back Leak Temp			34	°C	
Supply Temp	40.0	°C	Back Leak Pressure			-98	mber	
Pressure Demand	400	bar	Delivery			0.0	mm3/st	
Injection Speed	500	IPM	Delivery Variation			0.00	mm3ist	
Pulse Width	0	μS				Overall	lest Pass Fi	
Backleak Pressure Demand	0	mbar						
Lood Previous Rext	Pi	int S	ave				Re	
Results Step Step					No.	100	F	1
F1 87 F3 FL P3		6	F7	110	-	-	-	

Slika 32 Provjera curenja goriva

Itename 0445110252.HART_2452_PEUCEOT 407_20173204 DISCLAIMER This data is provided for indication only, it is the resp to validate any test data. Harridon DDES NOT access any liability.		the operator	Resu	ilts V	iewer	- (Charte	
Testplan 0445110258.HART.CPF Type Bosch Sciencid		TINS GALL			Sup	ply Temp	29.4	
HW Bosch CRIB					Rail	Pressure		bat
Teststep 2 / 8 Purge				Min	Max	Value		
Test Comments / Instructions			Piezo Charge Voltage					
Runs to ensure system operates and air is purged from metering un	nit. Make su	re metering	Supply Temp			40.2	+c	
The upper of the period second s			Resistance				Q	
Operator Name MAT Customer Ref (PEU)	GEOT 407		Rail Pressure			799	bar	
Serial No 2482	2/2047		Response Time			999	45	
Test Time 12:5	0:37		Response Variation			0	115	
Results Comments			Back Leak Flow			16.20	mmlist	
			Back Leak Temp			34	*	
Supply Temp	40.0	°C	Back Leak Pressure			5	mbar	
Pressure Demand	800	bar	Delivery			0.0	mm3ist	
Injection Speed	1000	IPM	Delivery Variation			0.00	mm3/st	
Pulse Width	1000	μS				0.00		
Particular Pressure Demand	0	mbar				Overall	rest Passa	0
Loud Previous Rest	Pr	int S	lave				R	eturn
Results Step Step				50	510	E11	1	F12

Slika 33 Odzračivanje sustava

Slijedi korak zagrijavanja gdje je potrebno postignuti temperaturu ispitnog ulja od 40 °C.Statički povrat je korak u kojemu se ispituje propusnost ventila povrata, zadani je tlak 1700 bara, a na elektro-magnet nije doveden nikakav impuls. Ispitnom listom je zadani dozvoljeni povrat od 0 do 40 mm3. Na ovom primjeru vidljivo je da je povrat u zadanim granicama.

Slika 34 Statički povrat

Puno opterećenje je korak gdje se ispituje dobava i povrat injektora u punome opterećenju, zadani parametri su 1600 bara i 1000milisekundi na magnetu, a dozvoljena dobava je od 45,30 do 57,30 mm3 dok je dozvoljeni povrat od 5 do 64 mm3.

Slika 35 Puno opterećenje

Srednje opterećenje je korak u kojemu se ispituje srednje opterećenje injektora kod zadanih parametara 800 bara i 600 milisekundi i dozvoljene dobave od 12,20 do 21,40 mm3.

Filename	0446110259.HART_2482_PEUGEOT 407_28171294_	,126037		Resu	Its Vi	iewer		hartri	
to validate any test	s data is provided for indication only; it is the resp data. Hartridge DOES NOT accept any liability f	onsibility of t	the operator this data.	magmah	v	12.45			
Testplan	0445310255.HART.CPF						ply Temp		
Type Bosc HW Bosc	h Solenoid h CRIB					Rail	Pressure	0	
Teststep	6 / 8 Mid Load				Min	Max	Value		
Test Comments / 1	astructions								
Typical mid load s	ettings			Supply Temp			39.7	10	
-				Resistance				Ω	
	Customer Ref PEU	GEOT 407		Rail Pressure			801	ber	
	Serial No 240. Test Date 04/1	2/2017		Response Time			422	45	
Results Comment	Test Time 12:5	0:37		Response Variation			4	25	
?				Back Leak Flow			33.45	mm3iat	
		_	La 1	Back Leak Temp			32	×	
	Supply Temp	40.0	°C	Back Leak Pressure			4	(mbar	
	Pressure Demand	800	bar	Delivery			15.3	te'Cmm	
	Injection Speed	400	IPM	Delivery Variation			0.18	mm3ist	
	Pulse Width	600	μS				Overall	Test Passi	Fail
	Backleak Pressure Demand	0	mbar						
		_							
						T			2et
Load P	revious Next	Pr	int	Seve					
					_	1000	51	100	F

Slika 36 Srednje opterećenje

Slijedi malo opterećenje gdje su zadani parametri od 250 bara i 650 milisekundi dozvoljene dobave od 0,30 do 6,30 mm3.

DISCLAIMER: This data is provided for indication only; it is the resp to validate any test data. Hartridge DOES NOT accept any liability f	126037 onsibility of or the use o	the operator f this data	Resu	Its V	iewer 12.46		Shar 8/2020
Testplan 0445110259.HART.CPF						oly Temp	
HW Bosch CRIB					Rail	Pressure	0
Teststep 7 / 8 Low Load		13555		Min	Max	Value	
Test Comments / Instructions			Piezo Charge Voltage				
Typical idle speed settings.			Supply Temp			40.4	°C
Operator Name III	0.16		Resistance				Ω
Customer Ref PEU	GEOT 407		Rail Pressure			250	bar
Serial No (240) Test Date (04/1	2/2017	3333	Response Time			778	μS
Results Comments	0:37		Response Variation			158	μS
3			Back Leak Flow			26.85	mm3/s
A sector Treas	40.0	°C	Back Leak Temp			32	°C
Supply temp	40.0	har	Back Leak Pressure			3	mbar
Pressure Demand	200	IDM	Delivery		6.30	1.9	mm3/s
Injection Speed	400	IPM	Delivery Variation			0.18	mm3/s
Pulse Width	650	μο				Overal	Test Pas
Backleak Pressure Demand	0	mpar					
	1 0	int 1	ave				
Previous Next							

Slika 37 Malo opterećenje

Zadnji korak je ispitivanje predubrizgavanja kod parametara 800 bara i 220 milisekundi dozvoljene dobave 0,30 do 2,70 mm3.

Filename 0445110258.HART_2482_PEUGEOT 407_20171204_			Resu	Its V	iewer		Charl
DISCLAIMER: This data is provided for indication only, it is the response to validate any test data. Hartridge DOES NOT accept any liability for	magmah	magmah v12.46					
Testplan 0445110259.HART.CPF						oly Temp	
HW Bosch CRIB					Rail	Pressure	0
Teststep 8 / 8 Pre Injection		11111		Min	Max	Value	
Test Comments / Instructions			Piezo Charge Voltage				
Typical Pre injection settings.			Supply Temp			40.8	°C
			Resistance				Ω
Customer Ref PEUC	GEOT 407		Rail Pressure			801	bar
Serial No 2482 Test Date 04/12	2/2017	333333	Response Time			428	μs
Results Comments	0:37		Response Variation			1	μs
2			Back Leak Flow			24.60	mm3/st
			Back Leak Temp			32	°C
Supply Temp	40.0	°C	Back Leak Pressure			3	mbar
Pressure Demand	800	bar	Delivery			1.7	mm3/st
Injection Speed	400	IPM	Delivery Variation			0.00	mm3/st
Pulse Width	220	μS				Overall	Test Pass
Backleak Pressure Demand	0	mbar					
	-						
					1		
Load Previous Next	Pr	int	lave				
					The second second	1 1 1 1 1 1	

Slika 38 Predubrizgavanje

Nakon završetka ispitivanja uređaj izlista kompletnu ispitnu listu gdje je moguće vidjeti sve vrijednosti tijekom svakog koraka ispitivanja te je moguće ispisati listu na pisač. Uređaj sam usporedi sve vrijednosti sa traženima vrijednostima iz ispitne liste te označi sa kvačicom ispravne, a sa oznakom x neispravne vrijednosti.

3.3. Ispitivanje Siemens Piezo common rail injektora

Prije ispitivanja Siemens Piezo injektora potrebno je ispitati otpornost piezo magneta. Pomoću specijalnog instrumenta ispituje se otpornost piezo magneta u kohm. Vrijednost ne smije biti manja od 170 kohm te mora biti konstantna minimalno 15 sekundi, napon mora iznositi 90 V. Što vrijednost padne manje od 170 kohm, to je vrijeme manje do proboja piezo magneta u toku rada te nije sigurno ispitivati takav injektor zbog mogućnosti oštećenja ispitnog uređaja.

Nakon ispitivanja otpornosti ispituje se snaga piezo magneta. Potrebno je demontirati piezo magnet sa tijela injektora te se na sam piezo magnet montira držač komparatora. Nakon montaže komparatora priključuje se na uređaj piezo magnet te se postepeno putem uređaja

Matija Tržok

podiže napon do 140 V. U tome trenutku piezo magnet mora pomaknuti iglu komparatora minimalno 0,040 mm.

Slika 40 Ispravan magnet

Slika 39 Neispravan magnet

Slika 41 Mjerenje snage piezo magneta

Sami postupak ispitivanja Siemens piezo injektora je isti kao i kod prethodnog Bosch injektora. Nakon odabira proizvođača i kataloškog broja injektora, uređaj prolazi kroz sve korake ispitivanja, od provjere curenja, odzračivanja sustava, statičkog povrata do punog, srednjeg i malog opterećenja te na kraju predubrizgavanja.

Slika 42 Siemens injektor na ispitnom uređaju

3.4. Ispitivanje i kodiranje Delphi common rail injektora

Samo ispitivanje i kodiranje Delphi common rail injektora izvodi se u zasebnom programu u sklopu uređaja a radi se o programu Iris koji je proizveden posebno za ispitivanje i kodiranje Delphi injektora te je ujedno i ovlašten od strane proizvođača Delphi za njihovo ispitivanje i kodiranje.

Ispitivanje injektora je podijeljeno u tri testa:

- Električni test
- Dijagnostički test
- Korekcijski test

Slika 43 Početni zaslon programa IRIS

🔤 IRIS - CRi Test and Repair	×
File Display Tools Diagnostic Help	
Injector Test Type CRi Test & Measurement Results and Analysis Injector Archive	
DELPHI Injector Test Type	
Injector Information	
Injector Information	
Operator Name Matija	
Injector Part Number	
Manufacturer/Type	
S/N 0136FX24F81	
C2I 1C35EB5DB1A94D4A	
Correction Test	
Quit	

Slika 44 Zaslon odabir kataloškog broja injektora

Kod električnog testa priključuje se zasebni konektor na sami injektor i putem programa se pokreće testiranje otpornosti elektro magneta. Dopuštena vrijednost je do 0,25 ohm. Ako injektor zadovolji tražene vrijednosti može se nastaviti sa daljnjim ispitivanjem odnosno sa dijagnostičkim testom.

Završni rad

IRIS - CRi Test and Repair					
File Display Tools Diagnostic Help					
Injector Test Type CRi Test & Measurement F	lesults and Analysis In	njector Archive			
Rail Pressure 0	1	bar Test Mode	Automatic Test		
Supply Temperature 40.0	40.2	°C Test Type	Electrical Test Injector Test Routi	ne	
Decklock December 0	10	mhar A Fixture (lamnad 🔿	Duine Mater Bunning	Time
Back Leak Pressure			ramped 🖉	Drive wotor numming	10:43:32 22/07/2015
Injection Speed 0					
Pulse Width 0	Electrical Test				
Testela	Resistance		0.21 ohms	;	
F10 EJDR00504Z					-1 μs
No. Test Module	Please connect the inie	iector to the resistance lead.		leak	37.0 °C
006 Resistance Test	Click 'continue' to proc	ceed.		1.2-	07.0
007 Valve Test	Continue > >		Cancel	1.2	
008 Static Leak Test				1.0-	
009 Flush and Warm-up		0.75			
010 Uynamic Leak Test		0.50-		0.5-	
012 Delivery Test - Characterisation		0.25-		0.2-	
		0.25-		0.2-	
		0.00-	0.00 mm3/st	0.0-	0.0 cc/min
-	<u>×</u>			,	
006 - 001 - 004 (Measure Resistance)					74 %
Stop <<	>> 0.0	Stabilisation Delay 0.0	Timeout Delay 0	DAQ Counter Ma	Chine Status
4					P- //

Slika 45 Zaslon mjerenja otpornosti magneta

Zadnji na redu je dijagnostički test u kojemu se ispituje statički i dinamički test povratnog ventila gdje se ispituje njegova ispravnost. Utest listi je zadana propisana količina goriva koja može otići u povrat putem navedenog ventila i zatim se prelazi na ispitivanje količina ubrizgavanja goriva u sto zadanih točaka u određenim režimima rada gdje se mijenjaju brojevi okretaja, dužina impulsa na elektro-magnetu te visina pritiska ubrizgavanja. Zadnje ispitivanje je ispitivanje ispravnosti koda kojemu je zadaća da ako u nekom od navedenih sto točaka količina ubrizgavanja nije odgovarajuća, korigira tu količinu ako je moguće. Ako nije onda test označava kod kao neispravan i potrebno je ići na kodiranje tj. kreiranje novog koda injektora.

Na slici broj (46) prikazan je test na kojemu su ispravne sve količine i sami kod injektora dok je na slici prikazan test na kojemu kod injektora nije ispravan i potrebno je kodiranje injektora.

ector	Test Type 🛛 CRi Test	t & Measurement	Results a	and Analysis	Injector A	rchive						
-Injec	tor Information-					10						
Injector P/N EJDR00504Z						La	Last Saved 2015/07/22 10:57.03					
					Ор	Operator Name Matija						
njeci		013017/24101			_							
Old G New	21 Number C21 Number	103568508148	J4U4A				Pressure Demand (bar)	Rail Pressure (bar)	Pulse Width (µS)	Corrected Pulse Width	Delivery (mm3/st)	Response Time (µS)
		Diagnostic Data	•	Shov	v Graph	94	1600	1600	275	299	11.95	306
Over	all Test Pass/Fail					95	1600	1599	281	305	12.38	307
UTC.						96	1600	1598	286	310	12.73	307
Result	Details			CRi-PC:1		97	1600	1599	292	316	13.23	307
EJDRO	0504Z_0136FX24F8	1_20150722_10	04515.DRF			98	1600	1600	298	322	13.72	307
No.	Result Info	rmation	Value	Units	Status 🔺	99	1600	1600	303	328	14.15	307
4	- Back Leak Temp		54.0	°C	 Image: A second s	100	1600	1600	309	334	14.66	306
5	Dynamic Leak Resu	lts				101	1600	1599	900	946	55.80	308
6	- Back Leak Flow		1.0	cc/min	~	102	1600	1600	1600	1659	82.64	306
/	- Back Leak Temp		63.7	90	 Image: A start of the start of	1		1		1	1	۲
8	Diagnostic Results	-	054.5			P	Pressure Demand (b	ar) Calcula	ted MDP (µS)	MDP D)rift (µS)	Status
9 10	- Galibrated Respons	e lime	351.5	μ8	×	Ŀ	400		288	-4	41	
10	- Stope		0.1	nm3/st.µS		Ŀ	800		189	-	30	
11	- οιυρε Uriπ Response Variation		9.1	70			1200		164	-1	26	<u> </u>
12	- nesponse variation Results		-30.4	μο			1600		141		31	V
13	- nesults		•	·								

Slika 46 Zaslon ispis konačnog rezultata ispitivanja(ispravan kod)

Ako je kod ispravan i sve vrijednosti odgovarajuće, uređaj izbacuje i graf u kojemu je prikazano kako se sa promjenom dužine impulsa na elektro-magnetu mijenja količina dobave goriva u određenim režimima rada. Slika (47)

Slika 47 Graf Dijagnostičkog testa

Ako se prilikom dijagnostičkog testa utvrdi da je kod neispravan (slika 48), potrebno je napraviti korekcijski test prilikom kojega se generira novi kod za testirani injektor.

Kod injektora je zapravo heksadekadski zapis koji sadrži potrebne korekcijske podatke injektora, tj. sadrži podatak o potrebnoj dužini impulsa koja je potrebna u određenom režimu rada injektora.

IRIS	CRi Test and Repa	tin Holp												
	piay roois Diagnos	ис пер												
					_									
Injector	Test Type CRi Test	t & Measurement	Results	and Analysis	Injector A	rchive								
⊢ Inje	ctor Information-						et Courad	2015/07/	2 12.07 00		olohi			
Injec	Injector P/N EJDR00504Z						2013/07/2	2 12.07.03	_ T	Technologies				
Injec	njector S/N 0704FX24F72					Operator Name Matija					rechnologies			
Old	C 21 Number	846EC31FA1B6	4AEE											
New	C2I Number	·					Pressure Demand	Rail Pressure	Pulse Width	Pulse Width	Delivery	Response 📥		
	o Er humbor) Discussio Data		Ohan	Cruch		(bar)	(bar)	<u>(µs)</u>	<u>590</u>	(mm3/st)	Time (µS)		
		Diagnostic Data		500	v Graph	94	1600	1599	275	303	10.67	320		
Ove	rall Test Pass/Fail				X	95	1600	1600	281	309	10.94	320		
				00:00.1	1	96	1600	1600	286	313	11.16	320		
Result	Details			URI-PU:T		97	1600	1598	292	319	12.05	320		
EJDRI	00504Z_0704FX24F7	2_20150722_1	15122.DRF			98	1600	1597	298	325	12.94	319		
No.	Result Info	rmation	Value	Units	Status 🛋	99	1600	1598	303	329	13.36	320		
4	- Back Leak Temp	•	58.0	°0	 	100	1600	1599	309	335	13.86	321		
5	Dynamic Leak Kesu	lts				101	1600	1600	900	907	52.92	321		
6	- Back Leak Flow		31.1	cc/min	×	102	1600	1599	1600	1595	78.81	319 🖵		
/	- Back Leak Temp		65.0	°0	*	1		1		1		<u>+</u>		
8	Diagnostic Results	T.	074.0	0		P	ressure Demand (ba	ar) Calcul	ated MDP (µS)	MDP	Drift (µS)	Status 📥		
9	- Galibrated Kespons	e i ime	2/1.8	μs			400		284		88	<u> </u>		
	- Slope		0.0369867	nm3/st.µ8	~		800		190		85	<u> </u>		
	- Siope Drift December Vector		0.2	70	%		1200		166		26	<u> /</u>		
12	- nesponse variation		-110.1	μs			1600		146		10			
13	- Résults			•		-						<u>×</u>		
Load R	esults Print	Options		0.01		ooult	1 P	.1+ 2	Popult 2	Docul				
F1		creen H	eport	621		esuit	i nest		nesuit 5	nesur	.4	Luit F12		

Slika 48 Dijagnostički test – kod neispravan

Korekcijski test je test prilikom kojeg se ponavljaju koraci kao i u dijagnostičkom testu. Radi se provjera statičkog i dinamičkog testa povratnog ventila i nakon toga ide ispitivanje količina ubrizgavanja goriva u sto zadanih točaka u određenim režimima rada gdje se mijenjaju brojevi okretaja, dužina impulsa na elektro-magnetu te visina pritiska ubrizgavanja i automatski se generira novi kod injektora u onoj točki gdje je odstupanje od zadane vrijednosti preveliko.

Nakon završetka korekcijskog testa na zaslonu je prikazan novi kod injektora i graf nakon korekcije. Za primjer je na slici prikazan graf prije korekcije a na slici je graf nakon korekcije tj. nakon generiranja novog koda injektora. Na grafu prije korekcije vidljivo je da je za primjer na 400 bara stvarna vrijednost koju prikazuje crvena linija na grafu daleko ispod žute linije koja je zadana vrijednost koja je potrebna.

Slika 49 Graf prije korekcije

Sljedeći graf prikazuje stanje nakon izvršenog korekcijskog testa i nakon kreiranja novog koda injektora gdje se može vidjeti ako se ponovno promatra krivulja na 400 bara da je sada situacija puno bolja i da se krivulje stvarne i zadane potrebne količine gotovo podudaraju.

Slika 50 Graf nakon korekcije

Razvoj automobilske industrije i rigoroznije ekološke norme dovele su do razvoja novih sustava ubrizgavanja goriva kod osobnih i teretnih vozila koji poboljšavaju efikasnost motora i smanjuju emisije štetnih plinova u atmosferu. Iz navedenih razloga pojavila se potreba za modernizacijom ispitnih uređaja ubrizgavanja goriva kako bi se servisima omogućilo kvalitetno servisiranje sustava ubrizgavanja.

Proizvođač Hartridge je omogućio na svojoj platformi CRi-Pc efikasno i brzo ispitivanje sustava ubrizgavanja te su na jednom uređaju objedinjeni svi postojeći proizvođači sustava ubrizgavanja. Tako je omogućeno jednim uređajem ispitati ispravnost komponenti i, ako je potrebno, istim uređajem i servisirati komponente sustava ubrizgavanja.

S obzirom na sve veće zahtjeve klijenata prema servisima, potrebno je imati opremu koja će omogućiti što brže, efikasnije i kvalitetnije servisiranje komponenti sustava ubrizgavanja.

Sve bržim razvojem novih sustava ubrizgavanja na proizvođačima opreme je veliki pritisak da u što krećem roku razviju opremu kojom će biti moguće njeno ispitivanje i servisiranje.

U ovome radu upoznali smo jednog od vodećih proizvođača opreme za ispitivanje te smo upoznali sve mogućnosti i prednosti ovoga uređaja kako u teorijskom tako i u praktičnom dijelu.

- 1. <u>http://www.hartridge.com/products/cri-pc-test-stand/</u> (posjet 07.03.2020)
- 2. <u>https://www.delphiautoparts.com/en/equipment/test-equipment/cri-pc/</u> (posjet 07.03.2020)
- 3. <u>https://repozitorij.vus.hr/islandora/object/vus%3A919/datastream/PDF/view</u> (posjet 07.03.2020)
- 4. <u>https://iris.my-delphi.com/Public/DownloadArea</u> (posjet 07.03.2020)
- 5. Radne skripte sa seminara Dizel tehnologija strani sustavi Bosch školski centar Prelog
- 6. Operating and Servicing Manual CRi-PC
- 7. Radne skripte sa seminara Dizel tehnologija Bosch sustav Bosch školski centar Prelog
- 8. Jozo Jelinić, Tehnologija održavanja vozila, Zrinski Čakovec, 2009.g