ODABIR EKOLOŠKI ODRŽIVIH RADNIH FLUIDA ZA POTREBE POGONA NAPREDNE KONFIGURACIJE RANKINEOVOG CIKLUSA S ORGANSKIM FLUIDOM

Očko, Karlo

Undergraduate thesis / Završni rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Karlovac University of Applied Sciences / Veleučilište u Karlovcu

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:128:787790

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-24

VELEUČILIŠTE U KARLOVCU Karlovac University of Applied Sciences Repository / Repozitorij:

Repository of Karlovac University of Applied Sciences - Institutional Repository

ODABIR EKOLOŠKI ODRŽIVIH RADNIH FLUIDA ZA POTREBE POGONA NAPREDNE KONFIGURACIJE RANKINEOVOG CIKLUSA S ORGANSKIM FLUIDOM

Očko, Karlo

Undergraduate thesis / Završni rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Karlovac University of Applied Sciences / Veleučilište u Karlovcu

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:128:787790

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2023-02-13

VELEUČILIŠTE U KARLOVCU Karlovac University of Applied Sciences Repository / Repozitorij:

Repository of Karlovac University of Applied Sciences - Institutional Repository

VELEUČILIŠTE U KARLOVCU STROJARSKI ODJEL STROJARSKE KONSTRUKCIJE

Karlo Očko

Odabir ekološki održivih radnih fluida za potrebe pogona napredne konfiguracije Rankineovog ciklusa s organskim fluidom

ZAVRŠNI RAD

KARLOVAC, 2022. godina

VELEUČILIŠTE U KARLOVCU STROJARSKI ODJEL STROJARSKE KONSTRUKCIJE

Karlo Očko

Odabir ekološki održivih radnih fluida za potrebe pogona napredne konfiguracije Rankineovog ciklusa s organskim fluidom

ZAVRŠNI RAD

dr.sc. Mustapić Nenad, prof. v.š.

KARLOVAC, 2022. godina

IZJAVA:

Izjavljujem da sam ja – student, Karlo Očko, matični broj 0248055022, upisan na Veleučilište u Karlovcu smjer stručni studij strojarskih konstrukcija akademske godine 2015/2016., radio ovaj rad samostalno, koristeći se znanjem stečenim tijekom obrazovanja na Veleučilištu u Karlovcu. Ovim putem bih se htio zahvaliti mentoru Nenadu Mustapiću na pomoći prilikom izrade završnog rada.

Karlo Očko

Karlovac, 8.9.2022.

SAŽETAK

Organski ciklus je vrsta Rankineovog ciklusa gdje se kao radni medij koristi organski fluidi koji ima nižu temeperaturu od vrelišta vode. Zbog relativno niske temeperature isparavanja organskog fluida, moguće je iskorištavanje niskoentalpijskih izvora topline kao što su: biomasa, otpadna toplina, geotermalna i sunčeva energija. U ovom zadatku je provedena eksergetska studija za 12 organska fluida pri različitim tlakovima u niskotemperaturnim i srednjetemperaturnim izvorima.

Ključne riječi : Organski rankineov ciklus, organski fluid, geotermalna energija, R1234yf, R1234ze(Z)

SUMMARY

The organic cycle is a type of Rankine cycle where organic fluids with a lower boiling point temperature than water are used as the working medium. Due to the relatively low evaporation temperature of the organic fluid, it is possible to use lowenthalpy heat sources such as biomass, waste heat, geothermal and solar energy. In this task, an exergetic study was carried out for 12 organic fluids at different pressures in lowtemperature and medium-temperature sources.

Keywords: Organic Rankine cycle, organic fluid, geothermal energy, R1234yf, R1234ze(Z)

SADRŽAJ

1.	UVOD	1
1.1.	Engineering Equation Solver (EES)	1
1.2.	Rankine-ov ciklus s organskim fluidom	1
2.	TEORETSKE OSNOVE	2
2.1.	Rankine-ov ciklus	2
1.1.	Rankineov ciklus s organskim fluidom	3
2.2.1.	Podjela i osobine radnih fluida	5
2.2.2.	Utjecaj radnih fluida na okoliš i zdravlje	6
2.2.3.	Izbor radnog fluida	7
3.	POSTAVKA ZADATKA	8
3.1.	Zadatak	.8
3.2.	Toplinska shema ORC ciklusa	9
3.3.	Tehničke specifikacije organskih radnih fluida	14
4.	RAZRADA ZADATKA	15
4.1.	Parametarska analiza	15
4.2.	Optimizacija konfiguracije	18
5.	ANALIZA DOBIVENIH REZULTATA	21
5.1.	Izbor najprikladnijih radnih fluida	21
5.1.1.	Radni fluid R1234ze(Z)	21
5.1.2.	Radni fluid R1234yf	22
5.1.3.	Isobutane	22
5.1.4.	Radni fluid R1234ze(E)	23
5.2.	Analiza rezultata	23
5.2.1.	Optimizacija radnih fluida za 120 °C	25
5.2.2.	Optimizacija radnih fluida za 140 °C	32
5.2.2.	Optimizacija radnih fluida za 160 °C	39
5.2.2.	Optimizacija radnih fluida za 180 °C	46
6.	ZAKLJUČAK	53

POPIS SLIKA

Slika 1. Shema (a) i T-s dijagram (b) Rankineovog ciklusa	2
Slika 2. Shema geotermalne ORC elektrane	4
Slika 3. T-s dijagram ciklusa	5
Slika 4. Mokri, izentropski i suhi radni fluidi	5
Slika 5. Shema konfiguracije	9
Slika 6. Visokotemperaturni stupanj postrojenja	10
Slika 7. Niskotemperaturni stupanj postrojenja	11
Slika 8. T-s dijagram postrojenja	11
Slika 9. Prednost paralelnog izmjenjivača topline	12
Slika 10. Proces dovođenja fluida iz pothlađene kapljevine u pregrijanu paru	
visokotemperaturnog stupanja	13
Slika 11. Nova parametarska tablica te odabrane varijable	15
Slika 12. Upisivanje vrijednosti za tlak prvog stupnja	16
Slika 13. Prikaz rezultata parametarske analize	17
Slika 14. Grafički prikaz rezultata parametarske analize	18
Slika 15. Prozor za odabir metode optimizacije te zadavanje granica	19
Slika 16. Granice optimizacije	20
Slika 17. Grafički prikaz rezultata za 120°C	26
Slika 18. Parametarska analiza R1234yf/R1234yf	28
Slika 19. Grafički prikaz parametarske analize R1234yf/R1234yf	28
Slika 20. T-s dijagram postrojenja za 120°C	30
Slika 21. Grafički prikaz rezultata za 140°C	33
Slika 22. Parametarska analiza R1234ze(E)/R1234yf	35
Slika 23. Grafički prikaz parametarske analze za 140°C	35
Slika 24. T-s dijagram postrojenja za 140°C	37
Slika 25. Grafički prikaz rezultata za 160°C	40
Slika 26. Parametarska analiza isobutane/R1234yf	42
Slika 27. Grafički prikaz parametarske analize za 160°C	42
Slika 28. T-s dijagram postrojenja za 160°C	47
Slika 29. Grafički prikaz rezultata za 180°C	47
Slika 30. Parametarska analiza R1234ze(Z)/R1234ze(E)	49
Slika 31. Grafički prikaz parametarke analize za 180°C	49
Slika 32. T-s dijagram postrojenja za 180°C	51

POPIS TABLICA

Tablica 1. Odabrani organski fluidi korišteni u analizi	14
Tablica 2. Tehničke specifikacije fluida R1234yf	22
Tablica 3. Tehničke specifikacije fluida R1234ze(Z)	23
Tablica 4. Tehničke specifikacije fluida R1234ze(Z)	23
Tablica 5. Standardne vrijednosti proračuna	24
Tablica 6. Rezultati analize za 120°C	27
Tablica 7. Vrijednosti dobivene parametarskom analizom	29
Tablica 8. Odabrane granice za optimizaciju 120°C	29
Tablica 9. Odabrani parametri programa za 120°C	29
Tablica 10. Vrijednosti entalpije, entropije i temperature za 120°C	30
Tablica 11. Rezultati dobiveni optimizacijom za 120°C	31
Tablica 12. Rezultati analize za 140°C	34
Tablica 13. Vrijednosti dobivene parametarskom analizom	36
Tablica 14. Odabrane granice za 140°C	36
Tablica 15. Odabrani parametri programa za 140°C	36
Tablica 16. Vrijednosti entalpije, entropije i temperature za 140°C	37
Tablica 17. Rezultati dobiveni optimizacijom za 140°C	38
Tablica 18. Rezultati analize za 160°C	41
Tablica 19. Vrijednosti dobivene parametarskom analizom	43
Tablica 20. Odabrane granice optimizacije za 160°C	43
Tablica 21. Odabrani parametri programa za 160°C	43
Tablica 22. Rezultati dobiveni optimizacijom za 160°C	45
Tablica 23. Rezultati analize za 180°C	47
Tablica 24. Vrijednosti dobivene parametarskom analizom	50
Tablica 25. Odabrane granice za 180°C	50
Tablica 26. Odabrani parametri programa za 180°C	50
Tablica 27. Rezultati dobiveni optimizacijom za 180°C	52

POPIS OZNAKA

Oznaka	Jedinica	Opis
p_geo	bar	Tlak geotermalnog fluida
m_geo	kg/s	Maseni protok geotermalnog fluida
T_amb	°C	Temperatura okoliša
P_atm	bar	Tlak okoliša
T_condHTS	°C	Temperatura kondenzatora
T_condLTS	°C	Temperatura kondenzatora
TppHTS	°C	Temperaturna razlika geo i radnog fluida
TppLTS	°C	Temperaturna razlika geo i radnog fluida
TapHTS	°C	Razlika između temp. zasićenja i
		temp. vode koja ulazi u isparivač
TapLTS	°C	Razlika između temp. zasićenja i temp. vode koja ulazi u isparivač
DeltaT_HTSSH	°C	Temperaturna razlika pregrijavanja i temperature zasićenja
DeltaT_LTSSH	°C	Temperaturna razlika pregrijavanja i temperature zasićenja
Eta _{pHTS}	%	lskoristivost pumpe visokotemperaturnog stupanja
Eta _{pLTS}	%	Iskoristivost pumpe niskotemperaturnog stupanja
Eta _{tHTS}	%	Iskoristivost turbine visokotemperaturnog stupanja
Eta _{tLTS}	%	lskoristivost turbine niskotemperaturnog stupanja

DeltaT _{HTSSC}	°C	Temperaturna razlika zasićenja i trenutne temperature
DeltaT_LTSSC	°C	Temperaturna razlika zasićenja i trenutne temperature
DeltaT _{condHTS}	°C	Minimalna razlika između temperatura u kondenzatoru i radnom fluidu
DeltaT_condLTS	°C	Minimalna razlika između temperatura u kondenzatoru i radnom fluidu
W_dot_bhp	kW	Snaga pumpe
P _{LTSmax}	bar	Maksimalni tlak niskotemperaturnog stupanja
P _{HTSmax}	bar	Maksimalni tlak visokotemperaturnog stupanja

1. UVOD

1.1. Engineering Equation Solver (EES)

EES je opći program sa kojim se može numerički riješavati tisuće povezanih nelinearnih algebarski i diferencijalnih jednadžbi. Program se također može koristiti za rješavanje diferencijalnih i integralnih jednadžbi, optimizaciju, pružanje analiza nesigurnosti, izvođenje linearne i nelinearne regresije, pretvaranje jedinica, provjeru dosljednosti jedinica i generiranje grafikona kvalitete objavljivanja. Iznimna točnost termodinamičke baze je glavna značajka programa te transportna baza podataka u kojoj se nalazi stotine tvari za veliku mogućnost rješavanja jednadžbi. U ovom završnom radu program će se koristiti za izvođenja parametarskih studija gdje se odabrane varijable mogu uključiti u tablicu. U parametarskoj studiji uključuju se nezavisne varijable i njihove vrijednosti u ćelije tablice te program riješava tablicu kako bi odredio iznos svi zavisnih varijabli. Dodatno će se program koristiti za izradu grafova između bilo koje dvije varijable u tablici. [1]

1.2. Rankine-ov ciklus s organskim fluidom

Procijenjeno je da će se do 2030. godine udvostručiti potrošnja energije. Povećana zabrinutost o nestašici energije istaknula je važnost niskotemperaturnih toplinskih izvora za koje je predložen veliki broj rješenja. Rankine-ov ciklus s organskim fluidom, ORC tehnologija, zbog svih svojih prednosti, među svim mnogobrojnim rješenjima za proizvodnju električne i toplinske energije iz niskotemperaturnih izvora je najviše korištena. [2]

Rankineov ciklus je početna točka gledišta kada se priča o ORC ciklusu u kojem se za radni mediji umjesto vode koristi organski fluid. Zbog relativno niske temeperature isparavanja organskog fluida moguće je iskorištavanje niskoentalpijskih izvora topline (biomasa, otpadna toplina, geotermalna i sunčeva energija). ORC tehnologija zauzima važnu ulogu u pretvorbi toplinske u električnu energiju zbog niskih temperatura u rasponu od 80 do 350°C čime povećuje učinkovitost postojećih i novih postrojenja. Dodatnu prednost ORC tehnologija dobiva na činjenjici da su potrebni niski radni pritisci u odnosu na klasičan Rankine-ov ciklus, Carnot-ov ciklus te druge termodinamičke cikluse.

2. TEORETSKE OSNOVE

2.1. Rankine-ov ciklus

Rankine-ov ciklus (RC) je termodinamički kružni proces koji pretvara toplinsku energiju u mehanički rad. Spada među najvažnije cikluse današnjice te se njime proizvodi velika količina električne energije. U takvim postrojenjima, se kao izvor topline koriste uglje, priodni plin, nafta i drugi izvori fosilnih goriva.

Toplinska sheme i TS dijagram ciklusa prikazan je na slikama 4(a) i 4(b)

Sastoji se od četiri procesa:

- 1 2 izentropna kompresija radnog medija
- 2 3 izobarno isparavanje (vrela kapljevina para)
- 3 4 izentropna ekspanzija radnog medija
- 4 1 izobarna kondenzacija (para vrela kapljevina).

Slika 1. Shema (a) i T-s dijagram (b) Rankineovog ciklusa [3]

Radni fluid je voda koja se pomoću pumpe podiže na visoki tlak. Voda se zatim izobarno zagrijava u generatoru pare gdje nastaje pregrijana para. Para zatim ekspandira u turbini kako bi proizvela rad. Izlazni fluid iz turbine se zatim hladi u kondenzatoru do kapljevitog stanja i ciklus se ponavlja. Dok se kod Carnotova procesa koristi kompresor

za stlačivanje plina kod Rankine-ovog ciklusa je razlika u tome što za stlačivanje i koristi pumpa. To je ujedno i jedna od glavnih prednosti za provođenje termodinamičkog kružnog procesa u praksi, budući da podizanje tlaka kapljevini zahtijeva vrlo malo energije u odnosu na komprimiranje plina.

2.2. Rankineov ciklus s organskim fluidom

ORC kao glavne komponente za rad sustava koristi isparivač, turbinu, kondenzator i pumpu, kao i klasičan Rankinov ciklus kao što možemo vidjeti na slici 2. Razlike u ORC sustavima se uglavnom odnose na korišteni radni fluid u ciklusu, termodinamičke osobine radnog fluida i temperaturu izvora topline. Dok se u Rankinovom ciklusu koristi samo voda, postoje stotine različitih radnih fluida koji se mogu koristiti u ORC ciklusu, to je ujedno još jedna od glavnih prednosti između ta dva ciklusa. Većina organskih fluida imaju nižu točku vrenja od vode, što ih čini pogodnim za korištenje toplinskog potencijala s temperaturama ispod 350°C. Ovo pokazuje da organski fluidi trebaju nižu temperaturu izvora topline od vode kako bi prešli u parnu fazu, te kao takvi mogu koristiti niskoentalpijske izvore topline. Prema temperaturi možemo klasifiicirati geotermalne izvore u tri skupine [4] :

- 1. Niskotemperaturna (<100°C),
- 2. Srednjetemperaturna (100-200°C),
- 3. Visokotemperaturna (>200°C).

Slika 2. Shema geotermalne ORC elektrane [5]

Zagrijavanje i isparavanje radnog fluida odvija se u dva odvojena izmjenjivača topline. U predgrijaču se odvija prvi stupanj, radni fluid se dovodi od stanja podhlađene kapljeine do stanja vrele kapljevine. Drugi stupanj odvija se u isparivaču gdje se radni fluid dovodi do stanja suhozasićene pare. Suhozasićena para odvodi se do turbine gdje ekspandira te proizvodi mehanički rad koji se pretvara u električnu energiju. Izlazna para iz turbine kondenzira se u kondenzatoru gdje se radnom fluidu odvodi toplina pomoću vode ili zraka. Iz kondenzatora izlazi vrela kapljevina koja se pumpom tlači na radni tlak koji prevladava u predgrijaču i isparivaču.

Slika 3. T-s dijagram ciklusa [5]

2.2.1. Podjela i osobine radnih fluida

Učinkovitost ORC ciklusa ponajviše ovisi o izboru radnog fluida. Klasifikacija u smislu mokrih, izentropskih i suhih fluida može se prikazati pomoću T - s dijagrama, slika 4.

- 1. "mokri" fluidi krivulja zasićenja ima negativan nagib (voda, R134 i dr)
- 2. "izentropski" fluidi krivulja zasićenja pare je okomita (R11, R142b i dr)
- 3. "suhi" fluidi kivulja zasićenja ima pozitivan nagib (izobutan, R245fa i dr).

Slika 4. Mokri, izentropski i suhi radni fluidi [6]

Do povećanja entropije i smanjenja temperature dovodi negativan nagib krivulje dok pozitivan nagib dovodi do smanjenja entropije ali i smanjenja temperature. Kod izentropskog nagiba krivulja zasićene pare je okomita te označuje konstantnu entropiju. Izentropski i suhi radni fluidi sa aspekta zaštite opreme (turbina i kondenzatora) su najpogodniji jer napuštaju turbinu kao pregrijana para i eliminiraju rizik od nastanka korozije. Gustoća organskog fluida igra ključnu ulogu pri dimenzioniranju komponenti ciklusa, koje su ovisne od volumnog protoka. Veća gustoća znači manji specifični volumen, niži volumni protok te manje dimenzije komponenata. Suhe i izentropske radne tekućine najprikladnije su za ORC jer se ne kondenziraju nakon što tekućina ode kroz turbinu.

2.2.2. Utjecaj radnih fluida na okoliš i zdravlje

Mnogi radni fluidi koji imaju dobra termodinamička obilježja istovremeno negativno utječu na okoliš. Glavni parametri koji definiraju utjecaj radnog fluida na okoliš su:

- 1. potencijal globalnog zatopljenja (engl. Global Warming Potential GWP),
- 2. potencijal osiromašivanja ozonskog sloja (engl. Ozone Depletion Potential ODP).

Potencijal globalnog zagrijavanja (GWP) opisuje utjecaj stakleničkog plina na klimatske promjene u odnosu na istu količinu ugljičnog dioksida. Obzirom da je CO2 uzet kao referentni plin, njemu je dogovorno dodijeljena vrijednost GWP-a 1. Ugljični dioksid koristi se kao referentna mjera jer ima najveći učinak na globalno zagrijavanje. Voda ima GWP od 0. GWP se računa za točno određeno vrijeme, a najčešće za 20, 100 i 500 godina i obvezno se navodi prilikom prikazivanja vrijednosti GWP-a.

Trošenje stratosferskog ozona (ODP) predstavlja stanjivanje stratosferskog ozonskog omotača, kao rezultat antropogenih emisija. Trošenje stratosferskog ozona negativno utječe na zdravlje ljudi, okoliš i prirodne resurse. [7]

2.2.3. Izbor radnog fluida

Jedan od važnijih zadataka kod projektiranja ORC ciklusa je pravilan izbor radnog fluida. Kod izbora radnog fluida za ORC treba voditi računa o više kriterija a to su: priroda izvora topline, osobine fluida, troškovi pumpi i turbina, termodinamičke osobine fluida.

Metodologija izbora radnog fluida je:

1. pregled literature o postojećim organskim fluidima,

- 2. prvi izbor uzimajući u obzir radnu temperaturu izvora topline i kondenzatora,
- 3. drugi izbor sa naglaskom na sigurnost i okoliš (Montrealski protokol),
- 4. usporedba termodinamičkih svojstava i određivanje učinkovitosti ciklusa,
- 5. provjera dostupnosti turbina u smislu razumnog radnog područja.

3. POSTAVKA ZADATKA

U ovom završnom radu je potrebno provesti postupak odabira ekološki održivih radnih fluida za potrebe pogona napredne konfiguracije Rankineovog ciklusa s organskim fluidom. Između odabranih radnih fluida potrebno je odabrati najprikladnije za specifične pogonske uvijete. Kao osnovni alat koristiti programski paket Engineering Equation Solver (EES). Za najbolje predstavnike kod odgovarajućih pogonskih uvijeta provesti konvencijalnu eksergetsku analizu. Provesti analizu dobivenih rezultata, te definirati odgovarajuće zaključke.

3.1. Zadatak

Odabrana konfiguracija postrojenja je napredni Rankineov ciklus s organskim fluidom, a odabrana je subkritična konfiguracija sa dva zasebna postrojenja, u kojem su izmjenjivači topline između postrojenja paralelni. Jedan od ciljeva provedene analize i optimiziranja je odabir najprikladnijeg radnog fluida za konfiguraciju postrojenja. Najprikladniji radni fluid dobiva se proračunskom kombinacijom svih odabranih fluida elektrane.

Početni zadatak u EES-u je parametarska analiza organskih fluida. Prilikom kojih se dobivaju granice fluida (tlak) koje su moguće izvedive za dani sustav. Te granice se definiraju toplinskim veličinama postrojenja te tlakovima unutar kojih postrojenje radi. Granice će nam služiti za optimizaciju u kojoj se traži maksimalna vrijednost rada prema dobivenim vrijednostima. Iz dobivene optimizacije elektrane ucrtava se T-s dijagram postrojenja.

3.2. Toplinska shema ORC ciklusa

Postrojenje se sastoji od dva različita stupnja, niskotemperaturni i visokotemperaturni. U oba sustava nalaze se odabrani organski fluidi, u ovom slučaju hladiti će se pomoću rashladnih tornjeva odnosno zraka.

Slika 5. Shema konfiguracije

Visokotemperaturni stupanj postrojenja odvija se između točaka 1-7 sa kondezacijski dijelom postrojenja 29-32. Početni dio ciklusa je na stanju radnog fluida T₂ gdje je radni fluid u stanju pothlađene kapljevine doveden na radni tlak, nakon čega prolazi prvu točku predgrijavanja u izmjenjivaču topline te mu je stanje i dalje kao pothlađena kapljevina T₃. Kako bi se radni fluid doveo iz stanja pothlađene kapljevine prolazi kroz predgrijač te prelazi u stanje vrele kapljevine T₄. Nakon toga radni fluid prolazi kroz isparivač i pregrijač radnog fluida u kojem nakon isparivača prelazi u suhozasićenu paru T₅ ali zbog dodatne iskoristivosti suhzasićenu paru dovdimo u pregrijano stanje T₆ pomoću pregrijača gdje imamo udio pare radnog fluida x=1.

Slika 6. Visokotemperaturni stupanj postrojenja

Niskotemperaturni stupanj se sastoji od nešto manje koraka. Uglavnom služi za dodatno iskorištavanje preostale energije radnog fluida koji se nije iskoristio u visokotemperaturnom stupanju. Sam ciklus se odvija između točaka 21 – 26 te se hladi zrakom 33 – 36. Isto kao i kod visokotemperaturnog stupanja, ciklus započinje na mjestu gdje je radni fluid u stanju pothlađene kapljevine te ima tlak potreban za rad T₂₂. Radni fluid takvog stanja ulazi u predgrijač T₂₃ gdje prelazi u vrelu kapljevinu. Nakon toga radni fluid prolazi kroz isparivač T₂₄ nakon čega je je radni fluid suhozasićena para i pregrijač T₂₅ gdje imamo pregrijanu paru.

Slika 7. Niskotemperaturni stupanj postrojenja

Slika 8. T-s dijagram danog postrojenja

Prednost ovog postrojenja je paralelni tok organskog radnog fluida T₁₅ na visokotemperatuni i niskotemperaturni stupanj T₁₆ i T₁₇. Fluid istovremeno svoju preostalu toplinsku energiju pomoću izmjenjivača topline podijeli na predgrijavanje T₃ i T₂₃ visokotemperaturnog i niskotemperaturnog stupanja elektrane. Samim time dodatno povećava iskoristivost ciklusa. Nakon što oba toka izađu iz izmjenjivača T₁₉ i T₁₈, sa smanjenom količinom energije, mješaju se ponovo te se vračaju u bušotinu T₂₀.

Slika 9. Prednost paralelnog izmjenjivača topline

Visokotemperaturni stupanj

Slika 10. Proces kondenzacije fluida

Takva pregrijana para T₆ ulazi u turbinu gdje ekspandira do stanja T₇, da bi radni fluid bilo moguće ponovo stlačiti na radni tlak, fluid u stanju T₇ prolazi kroz zrakom hlađeni kondenzator gdje se ponovo vraća u stanje potjlađene kapljevine T₁.

Wf	P _c (bar)	ر»C)	0,9'P., (bar)	Т _{ар} *Р _с (°C)	P _{cont} (35°C)	P=105°C	P=125°C	P=145°C	P=105°C
Cyclopentane	45,71	238,6	41,14	231	0,6184	4,007 bar	7,222 bar	10,67 bar	15,22 bar
n- pentane	33,64	196,5	30,28	189,2	0,9835	6,597 bar	9,993 bar	14,56 bar	20,59 bar
Isopentane	33,70	187,2	30,33	180,3	1,288	8,021 bar	11,946 bar	17,13 bar	23,87 bar
Neopentane	31,96	160,6	28,76	154	2,333	12,33 bar	17,79 bar	24,91 bar	S
R1233zd(E)	35,73	165,6	32,15	159,4	1,83	11,8 bar	17,35 bar	25,08 bar	S
R245fa	36,51	154	32,86	148,5	2,11	14,16 bar	21,27 bar	30,84 bar	S
R1234ze(Z)	35,31	150,1	31,78	144,2	2,478	15,0 bar	22,32 bar	S	S
n- butane	37,96	152	34,16	145,8	3,29	16,8 bar	24,15 bar	33,82 bar	S
Isobutane	36,40	134,7	32,76	128,4	4,845	21,76 bar	30,91 bar	S	S
R1234ze(E)	36,32	109,4	32,69	103,9	6,685	S	S	S	S
R134a	40,59	101	36,53	95,81	8,875	SC	S	S	S
R1234yf	33,82	94,7	30,44	89,4	8,952	S	SC	SC	S

Tablica 1. Odabrani organski fluidi korišteni u analizi

3.3. Tehničke specifikacije organskih radnih fluida

4. RAZRADA ZADATKA

4.1. Parametarska analiza

Na slici 11 prikazan je prozor u EESU koja sadrži jednu ili više varijabli. Prozor parametarske tablice sadrži jednu ili više parametarskih tablica. Svaka parametarska tablica djeluje poput proračunske tablice. Tablica se generira naredbom New Parametric Table. Ne postoji ograničenje broja parametarskih tablica koje se mogu generirati, osim dostupne memorije. Svaki stupac u parametarskoj tablici sadrži vrijednosti za odabranu varijablu. Numeričke vrijednosti mogu se unijeti u ćelije. Pretpostavlja se da su unesene vrijednosti nezavisne varijable. [8]

of Runs 10 🛨 Table:	: Traženje mak	simalnog Wnet
ariables in equations		Variables in table
_geoplotLTS[1] _geoplotLTS[2] _geoplotLTS[3] _geoplotLTS[4] _LTScond _LTSmax _plotHTS[1] _plotHTS[2] _plotHTS[3] _plotHTS[4]	▲dd ◄	Wret_tot p_maxHTS

Slika 11. Nova parametarska tablica te odabrane varijable

Odabiremo varijable iz proračuna potrebne za traženje rada. Varijable u pitanju su W_{nettot} i p_{maxHTS} . Tražimo W_{nettot} tako što fiksiramo maksimalni tlak niskotemperaturnog stupanja elektrane P_{LTSmax} gdje je temperatura niža te je i radni fluid drugačiji. Tlak visokotemperaturnog stupanja elektrane P_{HTSmax} variramo linearno s 20 mogućih vrijednosti od x do y. Vrijednosti tlakova korištenih za parametarsku analizu uzimamo iz tablice 1 u zavisnosti od ulazne temperature radnog fluida.

irst Row 1	\$	C Clear	Values	Apply
ast Row 20	\$	· Enter	Values	
First Valu	Je	14	bar	
Last (line	ar) 🔻 📔	18	bar	
E Beneat n	attern e	veru -	10 🛊 row	2

Slika 12. Upisivanje vrijednosti za tlak prvog stupnja

Nakon što izradimo novu parametarsku tablicu i dodamo nezavisne varijable zadajemo parametre varijable P_{HTSmax} . Prema slici 12. u prozoru EES-a definiramo ukupan broj redova za koje će parametarska analiza izvšiti proračun. Ukupan broj redova može biti odabran u dvije različite kategorije a to su " jasna vrijednost " ili " unesena vrijedost". Odabiremo funkciju "unesena vrijednost" pod kojom možemo zadati kako će se ponašati određene granice između kojih parametarska tablica računa vrijednosti za P_{HTSmax} . Između nekoliko ponuđenih mogućnosti odabiremo mogućnost zadavanja granice između prve i zadnje vrijednosti tako da se vrijednost mjenja linearno.

A	1 2	
1.20	Wnet _{tot} [kW]	P _{maxHTS} [bar]
Run 1	28,26	14
Run 2	28,33	14,21
Run 3	28,4	14,42
Run 4	28,45	14,63
Run 5	28,5	14,84
Run 6	28,53	15,05
Run 7	28,56	15,26
Run 8	28,58	15,47
Run 9	28,59	15,68
Run 10	28,59	15,89
Run 11	28,58	16,11
Run 12	28,57	16,32
Run 13	28,55	16,53
Run 14	28,52	16,74
Run 15	28,48	16,95
Run 16	28,44	17,16
Run 17	28,39	17,37
Run 18	28,33	17,58
Run 19	28,26	17,79
Run 20	28,19	18

Slika 13. Prikaz rezultata parametarske analize

Rezultati na slici 13. dobiveni parametarskom analizom grafički ucrtavamo u dijagram na slici 14. iz kojeg pobliže uočavamo radnu granicu organskog radnog fluida. Ovakva kombinacija parametarske tablice i grafičkog dijagrama je prvi korak u odabiru maksimalnih radnih granica fluida potrebnih za optimizaciju konfiguracije. Parametarska analiza izvodila se za svaku pojedinačnu kombinaciju radnog fluida iz Tablice 1.

Slika 14. Grafički prikaz rezultata parametarske analize

4.2. Optimizacija konfiguracije

Po matematičkoj definiciji optimiranje je pronalaženje vrijednosti nezavisnih varijabli za koje funkcija cilja f(x) ima optimalnu vijednost (minimum ili maksimum).

Višedimenzionalna optimizacija provodi se upotrebom:

- 1. metode konjugiranih gradijenata (Conjugate Directions Method),
- 2. metode promjenjive metrike (Variable Metric Method),
- 3. Nelder-Mead Simplex metoda,
- 4. DIRECT algoritam,
- 5. genetski algoritam.

Kao metodu otpimiranja u ovom slučaju odabrali smo genetrski algoritam. Na slici 15. prikazan je prozor za određivanje vrijednosti optimizacije za genetski algoritam. Broj pojedinaca može se kretati od 16 do 128, a broj generacija može se kretati od 16 do 2048. Brzina mutacije linearno varira od 0,0875 do 0,7. Što je veća vrijednost mutacije to algoritam točnije traži rezultat ali i proračun traje dulje. Na genetski algoritam ne utječe početne vrijednosti neovisnih varijabli. Međutim, donja i gornja granica nezavisnih varijabli izuzetno su važna jer se biraju unutar tih granica. Treba posvetiti puno pažnje pri odabiru tih granica. Ako se kontrole klizača postave na maksimalne vrijednosti broj pojedinaca u populaciji i broj generacija to će rezultirat s više od 262 000 procjena vrijednosti. Napredak optimizacije prikazan je tijekom postupka izračuna, tako da su najbolja vrijednost funkcije cilja i nezavisnih varijabli prikazane u kontrolnom prozoru.

		Select	4
 Maximize 		independent	variables
_plotHTS[5] _plotHTS[6] _plotHTS[7] _plotLTS[2] _plotLTS[3] _plotLTS[4] _plotLTS[6] _RITTLTS _RITTLTS _RITT_HTS _satHTS ffan_HTS /net_HTS /net_HTS	^	mwf_HTS mwf_LTS m_airHTS p[22] p[23] p[24] p[25] p[2] p[3] p[4] p[5] p[6] P_1TSmax	
vnet_tot	~	p maxHTS	
✓ Show array variable	s	🔽 Show array varia	bles
Method C Conjugate Directi Variable Metric m C Nelder-Mead Simp C DIRECT algorithm Genetic method	ons method othod olex method	Sensitivities	ivities in Solutio
Controls		valy valiables +/-	10 - 4
No. of Individuals	128		
No. of Generations	256		
Max. Mutation Rate	0,2625 rs	✓ 0K	🗙 Cance
Log Results	k to change)	Also log th	iese variables

Slika 15. Prozor za odabir metode optimizacije te zadavanje granica

Optimizacijom postrojenja dobivamo rezultate za rad postrojenja Wnet u kombinaciji sa svim odabranim fluidima u različitim temperaturnim zonama. Za optimizaciju je potrebno odabrati nezavisne varijable proračuna te smo za to odabrali sljedeće nezavisne varijable koje upisujemo u tablicu sa slike 16:

- 1. DeltaT_HTSSH,
- 2. DeltaT_LTSSH,
- **3**. P_LTSmax ,
- 4. P_HTSmax .

Parametre *DeltaT_HTSSH* i *DeltaT_LTSSH* smo kroz cijeli zadatak za sve temperaturne zone fiksirali unutar granica 5°C i 20°C, dok se ostala dva parametra P_LTSmax i P_HTSmax mijenjaju ovisno o odabranim granicama za pojedini radni fluid.

Show array variables Show string variables Variable	Guess 💌	Lower	Upper	Di	spl	ay	Units	Alt Units	Key	Comment	
DELTAT_HTSSH	5	5,0000E+00	2,0000E+01	A	3	N	С				
DELTAT_LTSSH	5	5,0000E+00	2,0000E+01	A	3	Ν	С				
P_LTSmax	20	1,5000E+01	2,0000E+01	A	0	N	bar				
p_maxHTS	28	2,6000E+01	3,1000E+01	A	0	Ν	bar				
				-							

Slika 16. Granice optimizacije

5. ANALIZA DOBIVENIH REZULTATA

5.1. Izbor najprikladnijih radnih fluida

Fluide koje ćemo u sljedećim poglavljima detaljnije opisati, dali su nam najbolje rezultate.

- 1. R1234ze(Z),
- 2. R1234ze(E),
- 3. Isobutane,
- 4. R1234yf.
- 5.1.1. Radni fluid R1234ze(Z)

R1234ze (Z) je rashladno sredstvo s vrlo niskim GWP. Zbog visoke kritične temperature nije prikladan za korištenje u klima uređajima ili hladnjacima, ali se može koristiti za visokotemperaturne dizalice topline, tehničke specifikacije fluida opisane su tablicom 2.

Predviđa se da će rashladno sredstvo R1234ze(Z) s niskim potencijalom globalnog zagrijavanja biti rashladno sredstvo izbora za visokotemperaturne sustave dizalica topline u industrijskim primjenama. Termodinamička procjena pokazuje da su teorijski koeficijenti učinkovitosti (COP) maksimizirani na temperaturi kondenzacije približno 20 K ispod kritičnih temperatura, međutim, kada je volumetrijski kapacitet neadekvatan, stvarni COP razlikuje se od teorijskog COP-a zbog velikog pada tlaka. [9].

R1234ze(Z)					
GWP	1				
Tlak kritične točke (kPa)	3530.618				
Temperatura kritične točke (K)	423.27				
Temperatura točke ključanja (K)	282.877				

Tablica 2. Tehničke specifikacije fluida R1234ze(Z) [9]

5.1.2. Radni fluid R1234yf

Odabir rashladnog sredstva za proizvodnju energije složeno je pitanje jer se mora uzeti u obzir nekoliko aspekata. U slučaju ORC-a, istraživanje o korištenju čistih tekućina i određenih mješavina počelo je prije nekoliko godina kako bi se postigla bolja energetska učinkovitost, kao i kako bi se smanjio utjecaj na okoliš. U tom smislu, novo rashladno sredstvo nazvano R1234yf, pokazuje ekološki prihvatljivija svojstva od konvencionalnih rashladnih sredstava. Stoga se R1234yf smatra izvrsnom zamjenom za rashladno sredstvo R134a, uglavnom u aplikacijama za klimatizaciju automobila. U stvari, Spatz i Minor su izvijestili da R1234yf ima izvrsna ekološka svojstva, kao što je nizak GWP, nula ODP i minimalno vrijeme života u atmosferi. Također su naglasili da su toksičnost i termodinamička svojstva R1234yf vrlo slična onima R134a. Tehničke specifikacije fluida opisane su tablicom 2.

R1234yf je potencijalni kandidat za ORC primjene, posebno za izvore topline niske do srednje temperature. Stoga je R1234yf predložen kao zamjenski kandidat za HFC, uglavnom iz ekološke perspektive, što je odlučujući čimbenik u odabiru rashladnih tekućina za ovu vrstu sustava [10].

Tablica 2.	Tehničke	specifikacije	fluida	R1234yf [10]
------------	----------	---------------	--------	--------------

R12	34yf
GWP	4
Tlak kritične točke (kPa)	3382
Temperatura kritične točke (K)	368
Temperatura točke ključanja (K)	244

5.1.3. Isobutane

Isobutane ili drugom oznakom R600a, koji je ugljikovodik (HC), koristi se za kućanske hladnjake i automate za prodaju. Posebno u kućanskim hladnjacima, većina njih koristi R600a. Osim toga, koristi se kao gorivo za kazetni cilindar korištenjem prirode izgaranja osim rashladnog sredstva. Budući da je r600a prirodno rashladno sredstvo koje izvorno postoji u prirodnom svijetu, GWP je vrlo nizak, a ODP je također 0. Tehničke specifikacije fluida opisane su tablicom 3. [11].

Tablica 3.	Tehničke	specifikacije	e fluida	Isobutane	[11]
-					

Isob	utane
GWP	3
Tlak kritične točke (kPa)	3648.70
Temperatura kritične točke (K)	408.15
Temperatura točke ključanja (K)	284.85

5.1.4. Radni fluid R1234ze(E)

Kao čista tvar R1234ze(E) smatra se zamjenom za R134a. Međutim, njegov volumetrijski rashladni kapacitet je ispod onoga kod R134a i R1234yf. Njegova točka ključanja također je viša od one R134a. Stoga se R1234ze(E) ne može smatrati zamjenom za R134a, već bi se trebao uzeti u obzir u novim dizajnima opreme za srednje temperature. Tehničke specifikacije fluida opisane su tablicom 4.

Do danas nije bilo velikih poticaja za korištenje R1234ze(E). Donošenjem nove regulative o F-plinu koja ima za cilj značajno smanjiti upotrebu HFC-a, te uvođenjem standarda koji će olakšati korištenje slabo zapaljivih rashladnih tvari, vidjet ćemo porast interesa za ovu rashladnu tvar. [12]

Tablica 4. Tehničk	e specifikacije fluida	R1234ze(Z) [12]
--------------------	------------------------	-----------------

R1234ze(E)												
GWP	1											
Tlak kritične točke (kPa)	3634.93											
Temperatura kritične točke (K)	382.52											
Temperatura točke ključanja (K)	254.2											

5.2. Analiza rezultata

Termodinamička analiza ORC postrojenja prikazanog na slici 5, provedena je sa odabranim fluidima iz tablice 1. Zadane vrijednosti prikazane tablicom 5 ostaju konstantne tijekom svih optimizacija osim ako je to izričito navedeno te se to odnosi samo na prvu vrijednost tablice T_geoinHTS koji nam određuje temperaturnu zonu danog ciklusa.

Parametri	Vrijednosti
T_geoinHTS	120,140,160,180
p_geo	10 bar
m_geo	1 kg/s
T_amb	20 C
P_atm	1 bar
T_condHTS / T_condLTS	35 C
TppHTS / TppLTS	10 C
TapHTS / TapLTS	10 C
DeltaT_HTSSH / DeltaT_LTSSH	5 C
Eta_pHTS / Eta_pLTS	0,7
Eta_tHTS / Eta_tLTS	0,85
Eta_mt	0,95
Eta_mp	0,95
DeltaT_HTSSC / DeltaT_LTSSC	2 C
DeltaT_condHTS / DeltaT_condLTS	5 C
W_dot_bhp	60 KW
Geofluid	Voda
Fluid kondenzatora	Zrak

Tablica 5. Standardne vrijednosti proračuna

5.2.1. Optimizacija radnih fluida za 120 °C

Za temperaturni režim od 120°C smo ukupno izračunali 144 različite kombinacije fluida. Na temelju rezultata studije vezane za navedenu temperaturu odabiremo kombinaciju fluida koja je pokazala najbolji rezultat. Kao najbolja kombinacija fluida odabrana je R1234yf/R1234yf. Najbitnije činjenice o tom fluidu obrazložene su u poglavlju 5.1.2.

R1234yf/R1234yf ćemo u nastavku prikazati detaljnim tablicama, dijagramima te rezultatima odrađene optimizacije.

Grafički prikaz svih kombinacija je prikazan na slici 17. koja je izrađena prema rezultatima iz tablice 6.

ica 6. Rezultati analize za 120°C		
	ica 6. Rezultati analize za 120°C	

	1	l
	18	
	т	
ĉ		
Š		
-	L	

	_		_	_		_	_		_	_		_	_		_	_		_	_		_	_		_	_		_	_		_	_		_	_		_
R1234yf	18.43	15.68	2.747	18.4	15.68	2.724	18.42	15.65	2.769	18.45	15.68	2.774	18.45	15.68	2.775	18.47	15.68	2.796	18.45	15.68	2.775	18.44	15.68	2.759	18.44	15.66	2.783	18.47	15.68	2.797	18.49	15.68	2.805	18.51	15.68	2.824
R134a	17.85	13.81	4.038	17.82	13.73	4.093	17.86	13.76	4.1	17.89	13.74	4.152	17.9	13.67	4.226	17.93	13.64	4.287	17.89	13.69	4.192	17.87	13.72	4.155	17.89	13.6	4.286	17.94	13.56	4.383	17.96	13.55	4.409	18.01	13.42	4.597
R1234ze(E)	17.7	13.49	4.218	17.69	13.48	4.204	17.72	13.46	4.267	17.76	13.4	4.359	17.76	13.38	4.377	17.79	13.35	4.445	17.74	13.49	4.252	17.73	13.4	4.339	17.75	13.34	4.408	17.81	13.26	4.553	17.83	13.21	4.625	17.89	13.03	4.858
isobutane R600a	17.36	12.79	4.564	17.34	12.7	4.64	17.38	12.76	4.62	17.41	12.65	4.756	17.41	12.69	4.726	17.45	12.59	4.861	17.39	12.62	4.772	17.39	12.67	4.718	17.42	12.66	4.759	17.47	12.46	5.014	17.49	12.46	5.034	17.56	12.12	5.439
R1234ze(Z)	17.38	12.4	4.981	17.35	12.43	4.928	17.4	12.36	5.032	17.43	12.33	5.101	17.44	12.29	5.15	17.48	12.28	5.199	17.42	12.34	5.074	17.42	12.37	5.048	17.43	12.32	5.106	17.5	12.13	5.366	17.52	12.03	5.488	17.6	11.91	5.69
n-butane R600	17.3	12.56	4.739	17.28	12.49	4.79	17.33	12.48	4.842	17.36	12.43	4.93	17.36	12.35	5.005	17.41	12.36	5.053	17.35	12.51	4.838	17.34	12.42	4.915	17.36	12.41	4.946	17.42	12.17	5.251	17.45	12.16	5.286	17.52	12	5.514
R245fa	17.48	12.76	4.725	17.46	12.74	4.721	17.5	12.71	4.784	17.51	13.09	4.423	17.53	12.63	4.906	17.58	12.6	4.975	17.52	12.65	4.871	17.51	12.7	4.815	17.53	12.61	4.919	17.6	12.58	5.015	17.62	12.46	5.156	17.68	12.23	5.454
Neopentane R601b	17.21	12.64	4.571	17.19	12.59	4.601	17.23	12.51	4.719	17.26	12.5	4.759	17.26	12.45	4.812	17.3	12.47	4.826	17.24	12.46	4.79	17.2	12.21	4.987	17.21	12.17	5.043	17.32	12.3	5.017	17.34	12.18	5.158	17.4	12.21	5.186
R1233zd(E)	17.14	13.82	13.32	16.79	13.78	13.01	17.4	12.46	4.941	17.44	12.37	5.071	17.44	12.38	5.053	17.25	11.42	5.829	17.17	11.41	5.761	16.09	10.17	5.92	17.39	11.92	5.469	17.5	12.06	5.443	17.52	12.13	5.395	17.59	11.83	5.753
Isopentane R601a	17.2	12.35	4.855	17.18	12.32	4.856	17.22	12.32	4.901	17.26	12.21	5.047	17.26	12.22	5.046	17.3	12.15	5.149	17.24	12.27	4.97	17.23	12.28	4.959	17.25	12.24	5.014	17.32	12.04	5.283	17.34	12	5.344	17.41	11.75	5.655
N-pentane R601	17.13	12.25	4.879	17.11	12.11	4.994	17.15	12.08	5.065	17.19	12.1	5.081	17.19	12.05	5.132	17.23	12	5.232	17.16	12.13	5.034	17.16	12.11	5.055	17.18	12.01	5.177	17.25	11.86	5.387	17.27	11.75	5.528	17.34	11.62	5.721
Cyclopentane	17.25	12.05	5.204	17.23	12.02	5.21	17.27	11.98	5.289	17.31	11.95	5.355	17.31	11.91	5.399	17.35	11.79	5.561	17.29	11.94	5.355	17.28	11.96	5.328	17.31	11.88	5.42	17.28	11.96	5.328	17.4	11.69	5.714	17.47	11.4	6.066
WF HTS WF LTS		Cyclopentane			N-pentane R601			Isopentane R601a			R1233zd(E)			Neopentane R601b			R245fa			n-butane R600			R1234ze(Z)			isobutane R600a			R1234ze(E)	1.11		R134a			R1234yf	

Kao što možemo vidjeti prema slici 18, parametarskom analizom dobivamo rezultate najvećeg rada i tlakova prema kojima sustav radi. Kada iscrtamo W_{net}/p_{max} dijagram, odredimo granice optimizacije koje su u ovom slučaju vidljive prema tablici 8.

16 bar	1 Wnet _{tot}	2 PmaxHTS	17 bar	1 Wnet _{tot} 2	P _{maxHTS} ►	18 bar	1 Wnet _{tot} 2	₽ ₽ _{maxHTS}	19 bar	1 Wnet _{tot} 2	2. ► P _{maxHTS}
	[kVV]	[bar]		[kvv]	[bar]		[kW]	[bar]		[kW]	[bar]
Run 1	18,1	28	Run 1	18,12	28	Run 1	18,07	28	Run 1	17,97	28
Run 2	18,12	28,13	Run 2	18,14	28,13	Run 2	18,1	28,13	Run 2	18	28,13
Run 3	18,14	28,26	Run 3	18,17	28,26	Run 3	18,13	28,26	Run 3	18,03	28,26
Run 4	18,16	28,39	Run 4	18,19	28,39	Run 4	18,15	28,39	Run 4	18,05	28,39
Run 5	18,18	28,51	Run 5	18,21	28,51	Run 5	18,18	28,51	Run 5	18,08	28,51
Run 6	18,2	28,64	Run 6	18,24	28,64	Run 6	18,2	28,64	Run 6	18,1	28,64
Run 7	18,22	28,77	Run 7	18,26	28,77	Run 7	18,22	28,77	Run 7	18,13	28,77
Run 8	18,24	28,9	Run 8	18,28	28,9	Run 8	18,25	28,9	Run 8	18,16	28,9
Run 9	18,26	29,03	Run 9	18,3	29,03	Run 9	18,27	29,03	Run 9	18,18	29,03
Run 10	18,28	29,16	Run 10	18,32	29,16	Run 10	18,29	29,16	Run 10	18,2	29,16
Run 11	18,29	29,28	Run 11	18,34	29,28	Run 11	18,31	29,28	Run 11	18,23	29,28
Run 12	18,31	29,41	Run 12	18,36	29,41	Run 12	18,33	29,41	Run 12	18,25	29,41
Run 13	18,33	29,54	Run 13	18,38	29,54	Run 13	18,36	29,54	Run 13	18,27	29,54
Run 14	18,35	29,67	Run 14	18,4	29,67	Run 14	18,38	29,67	Run 14	18,3	29,67
Run 15	18,36	29,8	Run 15	18,42	29,8	Run 15	18,4	29,8	Run 15	18,32	29,8
Run 16	18,38	29,93	Run 16	18,43	29,93	Run 16	18,42	29,93	Run 16	18,34	29,93
Run 17	18,4	30,05	Run 17	18,45	30,05	Run 17	18,44	30,05	Run 17	18,36	30,05
Run 18	18,41	30,18	Run 18	18,47	30,18	Run 18	18,46	30,18	Run 18	18,38	30,18
Run 19	18,43	30,31	Run 19	18,49	30,31	Run 19	18,48	30,31	Run 19	18,4	30,31
Run 20	18,45	30,44	Run 20	18,51	30,44	Run 20	18,5	30,44	Run 20	18,43	30,44

Slika 18. Parametarska analiza R1234yf/R1234yf

Slika 19. Grafički prikaz parametarske analize R1234yf/R1234yf

Na slici 19 možemo vidjet da u ovom slučaju kontinuiranim porastom tlaka raste i W_{net} , sve do kritične točke za odabrani fluid.

W _{net}	18,51 kW
PmaxHTS	30,44 bar
PmaxLTS	17 bar

U tablici 7 su prikazani najvažniji rezultati vezani za trenutnu kombinaciju fluida te su to tlakovi na kojima ciklus daje najveći stupanj rada. Dok u tablici 8. imamo odabrane vrijednosti granica za proces optimizacije.

Tablica 8. Odabrane granice za optimizaciju 120°C

	Donja granica vrijednosti	Gornja granica vrijednosti
DeltaT_HTS	5°C	20°C
DeltaT_LTS	5°C	20°C
PLTSmax	15 bar	19 bar
PHSmax	29,5 bar	30,44 bar

Odabir vrijednosti granica prema grafičkom prikazu na slici 19, prema tim granicama pokrećemo optimizaciju u zadanim uvjetima. Osim granica u kojem će se program tražiti maksimum, u tablici 9 zadani su sljedeći uvijeti unutar programskog paketa.

Tablica 9. Odabrani parametri programa za 120°C

Područje traženja	Maksimum					
Metoda	Genetska metoda					
Broj jedinki	100					
Broj generacija	200					
Maksimalna stopa mutacije	0,2625					

Optimizacijom proračuna dobivamo T-s dijagram prema slici 20. koji crtamo prema rezultatima iz tablice 10. Detaljnije rezultate optimizacije ciklusa definiravmo tablicom 11. te iz nje možemo iščitati sve bitnije podatke.

Slika 20. T-s dijagram postrojenja za 120°C

Tablica 10. Vrijednosti entalpije, entropije i temperature za 120°C

	s[i]	T[i]	h[i]						
1	1,153	33	244,8						
2	1,156	35,2	247,6						
3	1,282	62,56	288,2						
4	1,433	89,41	341,1						
5	1,579	89,41	394,3						
6	1,621	94,43	409,5						
7	1,631	1,631 41,85 3							
8	1,606	35	384,6						
9	1,162	35	247,6						
10	1,527	120	504,4						
11	1,477	115,4	485						
12	1,3	99,41	417,3						
13	1,115	83,4	350						
14	1,107	82,69	347,1						
15	0,9857	72,56	304,6						
16	0,9857	72,56	304,6						
17	0,9857	72,56 304							
18	0,6103	42,88	180,4						

	s[i]	T[i]	h[i]						
19	0,8083	58,22	244,5						
20	0,7811	56,07	235,6						
21	1,153	33	244,8						
22	1,154	33,88	245,9						
23	1,29	62,56	289,8						
24	1,609	62,56	396,8						
25	1,631	,631 67,73							
26	1,637	43,52	394						
27	1,606	35	384,6						
28	1,162	35	247,6						
29	6,845	20	293,3						
30	6,846	20,19	293,5						
31	6,877	29,49	302,9						
32	6,879	30	303,4						
33	6,845	20	293,3						
34	6,846	20,19	293,5						
35	6,877	29,37	302,8						
36	6,879	30	303,4						

Konfiguracija:	DS paralel HTS PH1 subcritical ORC SH SC ACC									
wf HTS/wf LTS:	R1234yf/R1234yf									
T _{geo,in} :	120	(°C)	(m _{geo} =1,0(kg/s))							

Tablica 11. Rezultati dobiveni optimizacijom za 120°C

Component (i)	E _{xf,i} (kW)	E _{xp,i} (kW)	E _{x0,i} (kW)	E _{xL,i} (kW)	Qi(kW)	Aui
HTS PH 1	6,916	4,642	2,273	9,016	51,63	3,307
HTS PH 2	13,18	10,99	2,181	26,03	67,31	4,56
HTS EV	15,52	12,94	2,582	0	67,61	4,037
HTS SH	4,855	3,814	1,041	0	19,42	0,753
HTS T	25,79	21,03	4,759	0	-	-
HTS CON	11,09	3,127	7,963	3,127	174,2	18,52
HTS P	3,473	2,612	0,861	0	-	-
LTS PH	1,975	1,541	0,4348	16,56	17,42	1,836
LTS EV	6,977	5,386	1,591	0	42,48	2,934
LTS SH	0,5212	0,3927	0,1285	0	2,945	0,1654
LTS T	4,711	3,846	0,8655	0	-	-
LTS CON	3,521	0,9882	2,533	0,9882	54,37	5,729
LTS P	0,4271	0,3207	0,1063	0	-	-

W _{net} :	18,51	kW				
η tot plant,Ex:	31,02	%				
Wnet,HTS:	15,68	kW				
W _{net,LTS} :	2,826	kW	H _{LTS} plantEn:	1,065	Hнтs _{plantEn} :	3,73
Pнтs:	30,44	bar	HLTS cycleEn:	4,502	Hнтs _{cycleEn} :	7,631
Plts:	17,39	bar	H _{LTS} plantEx:	11,12	Hнтs _{plantEx} :	29,29
ΔTsh,lts:	5,166	°C	HLTS cycleEx:	30,01	Hнтs _{cycleEx} :	39,19
ΔТѕн,нтѕ:	5,023	°C				
Xmps	0,8597					
Tgeo,out:	56,07	°C				
T(20)						

5.2.2. Optimizacija radnih fluida za 140 °C

Za temperaturni režim od 140°C smo ukupno izračunali 120 različitih kombinacija fluida. Na temelju rezultata studije vezane za navedenu temperaturu odabiremo kombinaciju fluida koja je pokazala najbolji rezultat. Kao najbolja kombinacija fluida odabrana je R1234ze(E)/R1234yf. Najbitnije činjenice o tom fluidu obrazložene su u poglavlju 5.1.2. i 5.1.4..

R1234ze(E)/R1234yf ćemo u nastavku prikazati detaljnim tablicama, dijagramima te rezultatima odrađene optimizacije.

Grafički prikaz svih kombinacija je prikazan na slici 21. koja je izrađena prema rezultatima iz tablice 12.

R1234yf																2									22								A	5	
R134a																6									5									4	
R1234ze(E)	30.75	27.3	3.449	30.74	27.31	3.425	30.76	27.28	3.48	30.81	27.31	3.5	30.81	27.31	3.503	30.84	27.3	3.536	30.8	27.31	3.488	30.79	27.31	3.48	30.8	27.26	3.538	30.88	27.31	3.573	30.9	27.31	3.587	96 ^{.0} 8	27.29 3.67
isobutane R600a	28.7	22.18	6.513	28.71	22.14	6.57	28.74	22	6.743	26.8	21.89	6.916	28.82	21.65	7.168	28.89	21.58	7.31	28.79	21.79	6.999	28.78	21.87	6.904	28.89	21.74	7.153	29.07	21.24	7.83	29.18	20.98	8.195	29.72	
R1234ze(Z)	28.51	21.06	7.448	28.53	20.97	7.552	28.6	21.02	7.579	28.67	20.87	7.797	28.35	21.87	6.484	28.76	20.59	8.169	28.66	20.75	7.906	28.66	20.93	7.733	28.73	20.68	8.047	28.97	20.03	8.94	29.05	19.6	9.451	29.46	14.67 6.162
n-butane R600	28.38	21.47	6.914	28.4	21.24	7.16	28.47	21.04	7.427	28.53	21.11	7.416	28.54	20.92	7.628	28.65	20.92	7.727	28.55	21.09	7.465	28.5	21.14	7.36	28.59	20.84	7.752	28.81	20.17	8.647	28.93	19.88	9.049	29.33	18.79 10.54
R245fa	28.71	21.77	6.934	28.72	21.64	7.084	28.79	21.76	7.028	28.85	21.58	7.265	28.86	21.53	7.336	28.94	21.4	7.537	28.85	21.55	7.295	28.82	21.63	7.186	28.91	21.36	7.55	29.13	20.74	8.39	29.21	20.47	8.737	29.05	
Neopentane R601b	28.38	21.47	6.914	28.12	21.22	6.904	28.1	20.64	7.46	28.28	21.07	7.208	28.3	21.17	7.127	28.36	21.06	7.304	28.27	21.3	6.969	28.25	21.23	7.019	28.33	21.14	7.189	28.53	20.1	8.429	28.62	20.15	8.471	28.98	
R1233zd(E)	28.47	21.06	7.414	28.1	19.56	8.531	28.45	20.24	8.203	28.62	20.79	7.835	28.65	20.76	7.891	28.18	18.81	9.37	28.15	19.26	8.889	27	17.56	9.433	28.63	20.03	8.6	28.92	19.97	8.956	29.01	19.44	9.572	28.99	
Isopentane R601a	28.06	20.8	7.262	28.08	20.7	7.375	28.15	20.65	7.493	28.21	20.52	7.685	28.23	20.46	7.772	28.3	20.25	8.058	28.2	20.45	7.749	28.18	20.47	7.709	28.27	20.32	7.947	28.5	19.72	8.776	28.58	19.03	9.559	28.97	18.63 10.34
N-pentane R601	27.94	20.47	7.466	27.95	20.21	7.74	28.03	20.27	7.756	28.1	20.18	7.921	28.12	20.13	7.992	28.19	19.98	8.219	28.09	20.18	7.913	28.06	20.18	7.878	28.16	20	8.162	28.4	19.13	9.269	28.49	18.76	9.738	27.83	
Cyclopentane	28.08	19.93	8.151	28.1	19.84	8.255	28.18	19.77	8.41	28.25	19.63	8.622	28.27	19.71	8.561	28.35	19.38	8.964	28.24	19.61	8.625	28.21	19.68	8.527	28.31	19.39	8.92	28.57	18.69	9.884	28.64	18.07	10.57	27.92	21.21 6.709
WF HTS WF LTS		Cyclopentane			N-pentane R601			Isopentane R601a			R1233zd(E)			Neopentane R601b			R245fa			n-butane R600			R1234ze(Z)			isobutane R600a			R1234ze(E)			R134a			R1234yf

Tablica 12. Rezultati analize za 140°C

Kao što možemo vidjeti prema slici 22, parametarskom analizom dobivamo rezultate najvećeg rada i tlakova prema kojima sustav radi. Kada iscrtamo W_{net}/p_{max} dijagram, odredimo granice optimizacije koje su u ovom slučaju vidljive prema tablici 13.

16 har	1 Wnet	2 P	10 hav	1 Wnet	2 P	20 har	1 Wnet	PT	22 har	1 Wnet	2 Presedutto
TO Dai	[kW]	[bar]	To par	[kW]	[bar]	20 041	[kW]	[bar]	22 041	[kW]	[bar]
Run 1	29,77	29	Run 1	30	29	Run 1	30,02	29	Run 1	29,87	29
Run 2	29,81	29,19	Run 2	30,05	29,19	Run 2	30,07	29,19	Run 2	29,93	29,19
Run 3	29,85	29,39	Run 3	30,1	29,39	Run 3	30,13	29,39	Run 3	29,99	29,39
Run 4	29,9	29,58	Run 4	30,15	29,58	Run 4	30,18	29,58	Run 4	30,05	29,58
Run 5	29,94	29,78	Run 5	30,2	29,78	Run 5	30,23	29,78	Run 5	30,1	29,78
Run 6	29,98	29,97	Run 6	30,24	29,97	Run 6	30,29	29,97	Run 6	30,16	29,97
Run 7	30,02	30,17	Run 7	30,29	30,17	Run 7	30,34	30,17	Run 7	30,21	30,17
Run 8	30,06	30,36	Run 8	30,34	30,36	Run 8	30,39	30,36	Run 8	30,26	30,36
Run 9	30,1	30,55	Run 9	30,38	30,55	Run 9	30,43	30,55	Run 9	30,32	30,55
Run 10	30,14	30,75	Run 10	30,43	30,75	Run 10	30,48	30,75	Run 10	30,37	30,75
Run 11	30,18	30,94	Run 11	30,47	30,94	Run 11	30,53	30,94	Run 11	30,42	30,94
Run 12	30,23	31,14	Run 12	30,52	31,14	Run 12	30,58	31,14	Run 12	30,47	31,14
Run 13	30,27	31,33	Run 13	30,56	31,33	Run 13	30,63	31,33	Run 13	30,52	31,33
Run 14	30,31	31,52	Run 14	30,61	31,52	Run 14	30,68	31,52	Run 14	30,57	31,52
Run 15	30,35	31,72	Run 15	30,65	31,72	Run 15	30,72	31,72	Run 15	30,62	31,72
Run 16	30,4	31,91	Run 16	30,7	31,91	Run 16	30,77	31,91	Run 16	30,67	31,91
Run 17	30,44	32,11	Run 17	30,74	32,11	Run 17	30,82	32,11	Run 17	30,72	32,11
Run 18	30,49	32,3	Run 18	30,79	32,3	Run 18	30,87	32,3	Run 18	30,77	32,3
Run 19	30,54	32,5	Run 19	30,84	32,5	Run 19	30,92	32,5	Run 19	30,82	32,5
Run 20	30,59	32,69	Run 20	30,89	32,69	Run 20	30,97	32,69	Run 20	30,87	32,69

Slika 22. Parametarska analiza R1234ze(E)/R1234yf

Slika 23. Grafički prikaz parametarske analze za 140°C

Na slici 23 možemo vidjet da u ovom slučaju kontinuiranim porastom tlaka raste i W_{net} , sve do kritične točke za odabrani fluid.

Tablica 13. Vrijednosti dobivene parame	etarskon	າ analizom
---	----------	------------

Wnet	30,97 kW					
PmaxHTS	32,69 bar					
PmaxLTS	20 bar					

U tablici 13 su prikazani najvažniji rezultati vezani za trenutnu kombinaciju fluida te su to tlakovi na kojima ciklus daje najveći stupanj rada. Dok u tablici 14. imamo odabrane vrijednosti granica za proces optimizacije.

Tablica 14. Odabrane granice za 140°C

	Donja granica vrijednosti	Gornja granica vrijednosti
DeltaT_HTS	5°C	20°C
DeltaT_LTS	5°C	20°C
PLTSmax	16 bar	22 bar
PHTSmax	31 bar	32,69 bar

Odabir vrijednosti granica prema grafičkom prikazu na slici 23, prema tim granicama pokrećemo optimizaciju u zadanim uvjetima. Osim granica u kojem će se program tražiti maksimum, u tablici 15 zadani su sljedeći uvijeti unutar programskog paketa.

Tablica 15. Odabrani parametri programa za 140°C

Područje traženja	Maksimum
Metoda	Genetska metoda
Broj jedinki	100
Broj generacija	200
Maksimalna stopa mutacije	0,2625

Optimizacijom proračuna dobivamo T-s dijagram prema slici 24. koji crtamo prema rezultatima iz tablice 16. Detaljnije rezultate optimizacije ciklusa definiravmo tablicom 17. te iz nje možemo iščitati sve bitnije podatke.

Slika 24. T-s dijagram postrojenja za 140°C

Tablica [·]	16.	Vrijednosti	entalpije,	entropije i	i temperature	za	140°C
----------------------	-----	-------------	------------	-------------	---------------	----	-------

	s[i]	T[i]	h[i]
1	1,156	33	245,6
2	1,159	35,18	248,8
3	1,303	66,84	295,4
4	1,501	103,9	366,6
5	1,647	103,9	421,9
6	1,695	108,9	439,9
7	1,708	43,15	415,9
8	1,68	35	407
9	1,165	35	248,5
10	1,739	140	589,6
11	1,672	133,6	562,3
12	1,461	113,9	478,7
13	1,173	88,37	370,9
14	1,164	87,56	367,5
15	1,037	76,84	322,5
16	1,037	76,84	322,5
17	1,037	76,84	322,5
18	0,6126	43,06	181,2

	s[i]	T[i]	h[i]
19	0,7906	56,82	238,7
20	0,7627	54,62	229,5
21	1,153	33	244,8
22	1,154	34,06	246,1
23	1,311	66,84	296,9
24	1,608	66,84	397,9
25	1,63	71,84	405,6
26	1,637	43,55	394
27	1,606	35	384,6
28	1,162	35	247,6
29	6,845	20	293,3
30	6,846	20,17	293,5
31	6,877	29,48	302,9
32	6,879	30	303,4
33	6,845	20	293,3
34	6,846	20,19	293,5
35	6,877	29,37	302,8
36	6,879	30	303,4

Konfiguracija:	DS paral	el HTS PH SC	1 subcritical ORC SH ACC		
wf HTS/wf LTS:	R1234ze(E)/R1234yf				
Taeo.in:	140	(°C)	(m _{geo} =1,0(kg/s))		

Tablica 17. Rezultati dobiveni optimizacijom za 140°C

						-
Component (i)	E _{xf,i} (kW)	E _{xp,i} (kW)	E _{x0,i} (kW)	E _{xL,i} (kW)	Qi(kW)	Aui
HTS PH 1	10,55	7,361	3,19	8,655	74,84	4,858
HTS PH 2	22,44	19,39	3,05	30,76	103	7,001
HTS EV	21,82	18,59	3,231	0	83,47	4,617
HTS SH	7,804	6,202	1,602	0	27,39	0,9032
HTS T	42,35	34,54	7,803	0	-	-
HTS CON	15,28	4,292	10,99	4,292	239,4	25,39
HTS P	4,672	3,514	1,158	0	-	-
LTS PH	2,779	2,235	0,5437	19,9	22,83	2,405
LTS EV	7,415	5,925	1,49	0	41,55	2,888
LTS SH	0,6664	0,5204	0,1461	0	3,495	0,1983
LTS T	5,989	4,89	1,1	0	-	-
LTS CON	3,769	1,056	2,712	1,056	57,98	6,098
LTS P	0,5911	0,4441	0,1471	0	-	-

Wnet:	30,96	kW				
ηtot plant,Ex:	37,32	%				
Wnet,HTS:	27,3	kW				
Wnet,LTS:	3,665	kW	H _{LTS} plantEn:	1,267	H _{HTS} _{plantEn} :	5,396
P _{HTS} :	32,69	bar	HLTS cycleEn:	5,317	Hнтs _{cycleEn} :	9,491
P _{LTS} :	19,91	bar	H _{LTS} plantEx:	12,27	Hнтs _{plantEx} :	32,89
ΔTsh,lts:	5,048	°C	HLTS cycleEx:	33,58	Hнтs _{cycleEx} :	44,39
ΔT _{SH,HTS} :	5,199	°C				
Xmps	0,8469					
T _{geo,out} :	55,13	°C				
T(20)						

5.2.2. Optimizacija radnih fluida za 160 °C

Za temperaturni režim od 160°C smo ukupno izračunali 108 različitih kombinacija fluida. Na temelju rezultata studije vezane za navedenu temperaturu odabiremo kombinaciju fluida koja je pokazala najbolji rezultat. Kao najbolja kombinacija fluida odabrana je Isobutane/R1234yf. Najbitnije činjenice o tom fluidu obrazložene su u poglavlju 5.1.3. i 5.1.4..

Isobutane/R1234yf ćemo u nastavku prikazati detaljnim tablicama, dijagramima te rezultatima odrađene optimizacije.

Grafički prikaz svih kombinacija je prikazan na slici 26. koja je izrađena prema rezultatima iz tablice 18.

WF HTS WF LTS	Cyclopentane	N-pentane R601	Isopentane R601a	R1233zd(E)	Neopentane R601b	R245fa	n-butane R600	R1234ze(Z)	isobutane R600a	R1234ze(E)	R134a	R1234yf
	41.4	41.37	41.55	42.38	41.86	42.94	42.52	42.71	43.93	5		
Cyclopentane	29.38	31.2	32.01	32.12	33.51	34.11	33.54	32.9	34.66			
	12.02	10.16	9.539	10.26	8.353	8.837	8.981	9.811	9.271			
	41.58	41.45	41.63	41.24	41.93	43.02	42.6	42.8	44.02			
N-pentane R601	29.78	30.93	31.72	29.61	33.51	33.9	33.44	32.51	34.63			
	11.79	10.52	9.914	11.63	8.424	9.123	9.162	10.28	9.395			
	41.7	41.57	41.74	42.44	42.02	43.12	42.71	42.91	44.12			
Isopentane R601a	29.58	30.78	31.42	31.11	33.13	33.7	33.2	32.52	34.64			
	12.12	10.79	10.31	11.33	8.893	9.421	9.508	10.38	9.479		2	× 5
	41.83	41.67	41.84	42.73	42.1	43.21	42.8	43.01	44.24	5		2
R1233zd(E)	29.33	30.46	31.33	31.98	33.44	33.75	33.11	32.41	34.65			
	12.5	11.21	10.51	10.75	8.661	9.467	9.696	10.59	9.589			
	41.9	41.75	41.91	42.68	42.17	43.27	42.87	43.07	44.3			
Neopentane R601b	29	30.49	31.07	30.8	32.92	33.46	32.79	32.13	34.66			
	12.9	11.26	10.83	11.89	9.249	9.812	10.08	10.94	9.639			1
	42.04	41.86	42.01	42.34	42.26	43.37	42.97	43.19	44.41			
R245fa	29.04	30.33	30.88	29.13	32.65	33.21	32.8	31.87	34.64			
	13	11.53	11.14	13.22	9.615	10.17	10.17	11.32	9.772		1	5
	41.86	40.32	41.86	42.33	42.13	43.24	42.83	43.04	44.26	5		2
n-butane R600	28.97	20.23	31.2	29.86	32.76	33.45	32.99	32.19	34.64			
	12.88	20.08	10.67	12.46	9.367	9.788	9.846	10.85	9.618			
	41.78	41.64	41.8	42.68	42.08	43.18	42.48	42.98	44.22			
R1234ze(Z)	29.43	30.63	31.32	32.47	33.2	33.54	32.4	32.31	34.66			
	12.35	11	10.48	10.21	8.879	9.644	10.08	10.66	9.555			
	42.07	41.89	42.04	42.94	42.25	43.4	43	43.23	44.24			
isobutane R600a	28.57	29.91	30.75	31.27	32	33.06	32.41	31.82	36.29			
	13.5	11.98	11.29	11.67	10.25	10.35	10.59	11.41	7.949			
	42.97	42.8	42.9	43.83	43.07	44.27	43.77	44.09	44.98	4	2	2
R1234ze(E)	26.65	26.58	26.79	27.87	27.34		28.31	28.15	34.66			
	16.33	16.22	16.1	15.75	15.72		15.46	15.94	10.32			
	42.78	42.77	42.94	43.86	43.23	44.36	43.95	44.14	45.43			
R134a	30	30.23	30.59	31.45	31.65	32.44	31.85	31.75	34.64			
	12.79	12.54	12.35	12.41	11.58	11.92	12.11	12.39	10.79			
	42.51	42.7	42.96	43.82	43.44	44.19	43.86	44.05	45.56			
R1234yf	31.87	32.32	32.52	33.53	33.46			33.7	35.7			
	10.64	10.37	10.44	10.29	9.981			10.35	9.883			

Tablica 18. Rezultati analize za 160°C

Kao što možemo vidjeti prema slici 27, parametarskom analizom dobivamo rezultate najvećeg rada i tlakova prema kojima sustav radi. Kada iscrtamo W_{net}/p_{max} dijagram, odredimo granice optimizacije koje su u ovom slučaju vidljive prema tablici 20.

	1	2		1	2		1			1	2
25 bar	P _{maxHTS} [bar]	Wnet _{tot} [kW]	26 bar	P _{maxHTS} [bar]	Wnet _{tot} [kW]	27 bar	P _{maxHTS} [bar]	Wnet _{tot} [kW]	<mark>28 ba</mark> r	P _{maxHTS} [bar]	Wnet _{tot} [kW]
Run 1	28	45,02	Run 1	28	45,11	Run 1	28	45,21	Run 1	25	44,14
Run 2	28,16	45,05	Run 2	28,11	45,14	Run 2	28,08	45,23	Run 2	25,16	44,21
Run 3	28,32	45,08	Run 3	28,21	45,16	Run 3	28,16	45,25	Run 3	25,32	44,28
Run 4	28,47	45,11	Run 4	28,32	45,19	Run 4	28,24	45,27	Run 4	25,47	44,35
Run 5	28,63	45,14	Run 5	28,42	45,21	Run 5	28,32	45,29	Run 5	25,63	44,42
Run 6	28,79	45,17	Run 6	28,53	45,23	Run 6	28,39	45,31	Run 6	25,79	44,48
Run 7	28,95	45,19	Run 7	28,63	45,25	Run 7	28,47	45,33	Run 7	25,95	44,55
Run 8	29,11	45,22	Run 8	28,74	45,27	Run 8	28,55	45,35	Run 8	26,11	44,61
Run 9	29,26	45,24	Run 9	28,84	45,3	Run 9	28,63	45,37	Run 9	26,26	44,67
Run 10	29,42	45,27	Run 10	28,95	45,32	Run 10	28,71	45,39	Run 10	26,42	44,73
Run 11	29,58	45,29	Run 11	29,05	45,34	Run 11	28,79	45,41	Run 11	26,58	44,79
Run 12	29,74	45,31	Run 12	29,16	45,36	Run 12	28,87	45,42	Run 12	26,74	44,85
Run 13	29,89	45,33	Run 13	29,26	45,37	Run 13	28,95	45,44	Run 13	26,89	44,9
Run 14	30,05	45,35	Run 14	29,37	45,39	Run 14	29,03	45,46	Run 14	27,05	44,96
Run 15	30,21	45,37	Run 15	29,47	45,41	Run 15	29,11	45,48	Run 15	27,21	45,01
Run 16	30,37	45,39	Run 16	29,58	45,43	Run 16	29,18	45,5	Run 16	27,37	45,06
Run 17	30,53	45,41	Run 17	29,68	45,45	Run 17	29,26	45,51	Run 17	27,53	45,12
Run 18	30,68	45,42	Run 18	29,79	45,46	Run 18	29,34	45,53	Run 18	27,68	45,17
Run 19	30,84	45,44	Run 19	29,89	45,48	Run 19	29,42	45,55	Run 19	27,84	45,21
Run 20	31	45,46	Run 20	30	45,5	Run 20	29,5	45,56	Run 20	28	45,26

Slika 25. Parametarska analiza isobutane/R1234yf

Slika 26. Grafički prikaz paramteraske analize za 160°C

Na slici 28 možemo vidjet da u ovom slučaju kontinuiranim porastom tlaka raste i W_{net} , sve do kritične točke za odabrani fluid.

Tablica 19. Vrijed	nosti dobivene	parametarskom	n analizom
--------------------	----------------	---------------	------------

Wnet	45,56 kW
PmaxHTS	29,5 bar
PmaxLTS	27 bar

U tablici 19 su prikazani najvažniji rezultati vezani za trenutnu kombinaciju fluida te su to tlakovi na kojima ciklus daje najveći stupanj rada. Dok u tablici 20. imamo odabrane vrijednosti granica za proces optimizacije.

Tablica 20. Odabrane granice optimizacije za 160°C

	Gornja granica vrijednosti	Donja granica vrijednosti
DeltaT_HTS	5°C	20°C
DeltaT_LTS	5°C	20°C
PLTSmax	25 bar	28 bar
PHTSmax	28 bar	30 bar

Odabir vrijednosti granica prema grafičkom prikazu na slici 28, prema tim granicama pokrećemo optimizaciju u zadanim uvjetima. Osim granica u kojem će se program tražiti maksimum, u tablici 21 zadani su sljedeći uvijeti unutar programskog paketa.

Tablica 21	. Odabrani	parametri	programa	za	160°C
------------	------------	-----------	----------	----	-------

Područje traženja	Maksimum
Metoda	Genetska metoda
Broj jedinki	100
Broj generacija	200
Maksimalna stopa mutacije	0,2625

Optimizacijom proračuna dobivamo T-s dijagram prema slici 28. Detaljnije rezultate optimizacije ciklusa definiravmo tablicom 22. te iz nje možemo iščitati sve bitnije podatke.

Konfiguracija:	DS paralel HTS PH1 subcritical ORC SH SC ACC			
wf HTS/wf LTS:	isobutane/R1234yf			
T _{geo,in} :	160	(°C)	(m _{geo} =1,0(kg/s))	

Tablica 22. Rezultati dobiveni optimizacijom za 160°C

Component (i)	E _{xf,i} (kW)	E _{xp,i} (kW)	E _{x0,i} (kW)	E _{xL,i} (kW)	Qi(kW)	Aui
HTS PH 1	14,34	10,45	3,891	7,546	89,65	5,511
HTS PH 2	26,37	22,87	3,499	48,88	102,4	5,915
HTS EV	28,66	25,06	3,591	0	95,89	5,038
HTS SH	5,362	4,452	0,9103	0	16,75	0,5271
HTS T	52,35	42,97	9,382	0	-	-
HTS CON	16,6	4,409	12,19	4,409	228,6	23,04
HTS P	4,624	3,477	1,146	0	-	-
LTS PH	9,434	8,052	1,382	23,47	67,79	7,142
LTS EV	13,77	11,26	2,509	0	64,39	3,908
LTS SH	2,217	1,723	0,4942	0	9,558	0,4001
LTS T	16,07	13,11	2,956	0	-	-
LTS CON	7,714	2,168	5,547	2,168	119,6	12,63
LTS P	1,928	1,449	0,4785	0	-	-

W _{net} :	45,56	kW				
ηtot plant,Ex:	41,61	%				
Wnet,HTS:	35,7	kW				
W _{net,LTS} :	9,883	kW	H _{LTS} plantEn:	2,628	Hнтs _{plantEn} :	6,031
PHTS:	30,28	bar	HLTS cycleEn:	6,986	Hнтs _{cycleEn} :	11,8
P _{LTS} :	26,3	bar	HLTS plantEx:	20,43	Hнтs _{plantEx} :	32,59
ΔTsh,lts:	5	°C	HLTS cycleEx:	39,28	Hнтs _{cycleEx} :	49,27
∆Тѕн,нтѕ:	5	°C				
Xmps	0,6651					
T _{geo,out} :	55,25	°C				
T(20)						

5.2.2. Optimizacija radnih fluida za 180 °C

Za temperaturni režim od 180°C smo ukupno izračunali 96 različitih kombinacija fluida. Na temelju rezultata studije vezane za navedenu temperaturu odabiremo kombinaciju fluida koja je pokazala najbolji rezultat. Kao najbolja kombinacija fluida odabrana je R1234ze(Z)/R1234ze(E). Najbitnije činjenice o tom fluidu obrazložene su u poglavlju 5.1.1. i 5.1.4..

R1234ze(Z)/R1234ze(E) ćemo u nastavku prikazati detaljnim tablicama, dijagramima te rezultatima odrađene optimizacije.

Grafički prikaz svih kombinacija je prikazan na slici 30. koja je izrađena prema rezultatima iz tablice 23.

11 12.78 108 61.65 1.38 48.6 1.71 13.06 1.71 13.06 1.71 13.06 1.71 13.06 1.75 13.06 2.55 61.82 2.56 62.01 2.56 62.01	1.11 12.78 1.08 61.65 1.38 43.6 1.71 13.06 1.71 13.06 1.71 13.06 1.71 13.06 1.71 13.06 1.74 61.82 1.74 61.82 1.74 61.82 1.3.23 13.23 1.84 13.23 1.84 13.38 1.84 13.38 8.95 62.15 8.02 13.55 1.3.55 48.61 1.3.55 48.61 1.3.55 48.61	1.11 12.78 1.08 61.65 1.33 43.6 1.31 13.06 1.58 43.6 1.594 61.85 1.58 61.82 1.58 61.82 1.3.06 13.23 1.3.05 48.63 1.3.25 62.01 1.84 13.38 1.84 13.35 1.85 62.15 8.02 13.55 1.3.55 48.61 1.3.55 48.61 1.3.55 48.61 1.3.55 48.61 1.3.55 48.61 1.3.55 48.61 1.3.5 48.61 1.13.5 48.61 1.13.5 48.61 1.13.5 48.61 1.13.5 47.29 0.97 61.62 0.92 14.34	1.11 12.78 1.08 61.65 1.31 13.06 1.31 13.06 1.32 13.06 1.34 13.06 1.35 13.23 1.36 61.82 1.30 61.85 1.30 61.85 1.30 61.85 1.30 62.01 1.32 62.01 1.32 62.01 1.32 62.15 1.33 84.6 1.35 62.15 1.35 62.15 1.35 62.15 1.35 62.15 1.35 13.35 1.35 13.55 1.35 13.55 1.35 13.55 1.35 13.55 1.35 13.55 1.43.4 62.5 1.43.4 62.5 1.43.55 13.95 1.43.55 13.95 1.43.55 13.95 1.55 13.95 1.55 13.95 1.55 13.95 1.55 13.95 1.55 13.95 1.55 13.95 1.55 13.95	1.11 12.78 1.08 61.65 1.33 13.06 1.34 13.06 1.35 13.06 1.44 13.23 1.58 62.01 1.58 62.01 1.58 62.01 1.58 62.01 1.58 62.01 1.58 62.01 1.58 62.01 1.58 62.15 1.59 62.15 1.355 13.38 1.355 13.35 1.355 13.35 1.355 13.35 1.355 13.35 1.355 13.35 1.355 13.35 1.355 13.35 1.355 13.35 1.355 13.35 1.355 13.35 1.43.4 62.1 1.355 13.35 1.43.4 62.5 1.43.55 14.34 1.43.55 14.35 1.43.55 13.95 1.43.55 13.95 1.43.55 13.95 1.43.55 13.95 1.54.55 13.95 1.54.55 13.95 1.54.55 13.95 1.54.55
60.08 61.65 48.38 61.65 48.38 48.6 58.94 61.82 46.65 48.59 13.23 58.58 62.01 58.58 62.01	60.08 61.65 48.38 48.6 48.38 48.6 58.94 61.82 58.94 61.82 58.94 61.82 46.65 48.59 46.65 48.59 112.29 13.23 58.58 62.01 46.74 48.63 11.84 13.38 59.95 62.15 61.94 62.31 61.94 62.31 61.94 62.31 48.6 13.55	60.08 61.65 48.38 48.6 11.71 13.06 58.94 61.82 58.94 61.82 46.65 48.59 12.29 13.23 46.65 48.53 12.29 13.23 46.74 48.63 46.74 13.38 59.95 62.15 59.95 62.15 61.32 13.25 61.32 13.55 61.32 13.55 61.72 62.15 61.72 62.1 61.72 62.1 61.72 62.1 61.72 62.1 61.72 61.72 61.72 61.62 12.37 13.5 60.97 61.62 48.05 47.29 48.05 14.34	60.08 61.65 48.38 48.6 11.71 13.06 58.94 61.82 58.94 61.82 58.94 61.82 48.65 48.59 46.65 48.59 11.71 13.06 58.58 62.01 46.74 48.63 11.84 13.38 46.74 48.63 11.84 13.38 61.94 62.31 48.6 13.35 13.02 13.55 61.94 62.31 48.61 13.38 48.61 13.55 61.72 62.15 61.35 13.55 62.14 62.31 49.28 48.61 12.37 13.55 61.72 62.1 61.72 62.5 62.947 62.5 62.95 14.34 45.55 14.355 45.55 52.55 52.55	60.08 61.65 48.38 48.6 11.71 13.06 58.94 61.82 58.94 61.82 58.94 61.82 48.55 48.59 11.71 13.06 58.58 62.01 48.65 48.63 11.229 13.23 58.58 62.01 46.74 48.63 11.84 13.38 46.74 48.63 11.84 13.38 48.61 13.35 61.94 62.31 48.61 13.35 61.72 62.15 61.35 62.15 61.35 13.55 61.42 48.61 12.37 13.55 61.42 48.61 12.37 13.55 61.62 13.55 12.37 14.24 12.35 14.24 49.68 14.24 49.68 62.55 49.68
48.38 48.6 11.71 13.01 58.94 61.8 61.8 61.8 7 46.65 48.5 7 12.29 13.2 61.8 61.8 61.8 58.58 62.0 62.0 65.58 62.0 65.0	48.38 48.6 11.71 13.00 58.94 61.8 58.94 61.8 12.29 13.2 12.29 13.2 12.29 13.2 13.02 13.2 11.84 13.3 13.25 62.0 58.56 62.0 13.3 13.2 11.84 13.3 11.34 13.3 61.94 62.3 61.94 62.3 61.94 62.3 62.3 62.1 35.95 62.1 36.92 62.1 37.45 62.3 48.6 62.3 38 61.94 62.3 48.6 62.3 56.55 62.3 57.56 62.3 58.56 62.3 58.56 62.3 59.95 62.3 59.95 62.3 58.6 62.3 58.6 6	48.38 48.6 11.71 13.00 58.94 65.8 58.94 65.8 46.65 48.5 58.55 62.0 48.5 58.94 11.71 13.00 12.29 13.2 48.5 58.95 66.0 13.2 11.84 13.33 48.6 62.1 59.95 62.1 61.94 62.3 61.92 62.1 61.92 62.1 61.72 62.1 61.72 62.1 60.97 61.6 60.97 61.6 60.97 61.6 61.62 13.7 61.62 14.3	48.38 48.65 48.5 11.71 13.00 13.29 58.94 61.83 13.20 11.71 13.00 13.27 58.55 66.57 48.55 58.55 66.57 13.27 58.55 66.57 13.27 58.55 66.57 13.27 58.55 66.57 13.27 58.55 66.27 13.27 59.55 66.27 13.27 59.55 66.23 13.57 59.55 66.23 13.57 61.126 61.37 13.57 61.237 13.55 66.23 61.57 61.56 13.57 61.66 13.57 61.6 61.66 13.55 62.13 61.67 61.67 62.13 61.67 61.67 62.13 61.67 61.67 62.13 61.67 62.13 62.13 61.67 62.13 62.13 <td< td=""><td>48.38 48.58 48.65 11.71 13.00 58.94 61.83 58.94 61.83 58.58 66.6 46.65 48.55 58.58 66.13 58.58 66.13 58.58 66.0 58.58 66.0 58.58 66.0 58.58 66.0 11.29 13.22 58.58 66.0 58.58 66.0 61.20 13.22 61.20 67.3 66.13 67.3 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13</td></td<>	48.38 48.58 48.65 11.71 13.00 58.94 61.83 58.94 61.83 58.58 66.6 46.65 48.55 58.58 66.13 58.58 66.13 58.58 66.0 58.58 66.0 58.58 66.0 58.58 66.0 11.29 13.22 58.58 66.0 58.58 66.0 61.20 13.22 61.20 67.3 66.13 67.3 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13 67.13
11.7 61.46 58.9 50.26 46.8 11.2 12.2 61.6 58.5 61.6 58.5 61.6 58.5	10.00 11.1 61.46 58.9 50.26 46.8 51.6 58.9 61.6 58.5 51.6 46.8 61.6 58.5 61.6 58.5 61.6 58.5 61.6 58.5 61.6 58.5 61.6 58.5 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3	10.00 11.12 10.00 11.12 61.46 58.93 50.26 46.63 50 46.74 50 46.74 50 46.74 50 46.74 50 46.74 50 46.74 61.6 58.55 61.6 58.54 61.75 59.93 61.75 59.93 61.75 59.93 61.36 61.3 61.37 61.3 61.38 61.3 61.36 61.3 61.37 61.7 61.7 61.7 61.78 61.3 61.79 60.3 61.79 60.3 61.59 60.3 61.59 60.3 61.59 60.3 61.59 60.3 61.59 60.3	10.0.6 11.7 10.0.6 11.7 61.46 58.93 50.26 46.68 51.6 58.55 50 46.68 51.6 58.55 50 46.7 50 46.7 51.75 59.94 61.76 58.55 61.78 61.1.8 61.7 61.1.8 61.7 61.1.3 61.7 61.1.2 61.7 61.1.2 61.7 61.1.2 61.7 61.1.2 61.7 61.1.2 61.7 61.1.2 61.7 61.1.2 61.7 61.1.2 61.7 61.1.2 61.8 61.2.3 49.3 12.3 12.3 12.3 12.3 12.3 61.5 60.9 61.6 52.3 62.8 52.4 63.69 52.2 63.69 52.2	10.0.6 11.7 10.0.6 11.7 61.46 58.93 50.26 46.86 51.6 58.55 50 46.87 50 46.77 50 46.7 51.75 59.93 61.76 58.55 61.77 61.2 61.78 61.3 61.79 61.3 61.7 61.1 61.7 61.1 61.7 61.1 61.7 61.1 61.7 61.1 61.7 61.1 61.7 61.1 61.7 61.1 61.69 60.9 61.70 61.1 61.83 12.3 61.53 12.3 61.53 12.3 61.53 12.3 61.53 12.3 61.53 12.3 61.53 12.3 61.54 52.2 63.67 52.2 <
9.395 9.43 49.2 10.24 59.55	59.43 59.43 49.24 59.32 59.33 59.33 59.33 59.33 59.33 59.33 59.33 59.33 59.33	59.43 59.43 49.55 59.62 10.24 49.62 59.31 49.52 59.33 49.52 59.33 48.45 59.33 48.45 59.33 10.43	59.43 59.43 59.43 59.43 59.685	9.335 9.43 49.22 49.24 49.25 59.33 49.55 59.33 49.55 59.33 49.55 59.33 49.55 59.33 49.55 59.33 49.55 59.33 49.55 59.33 49.55 59.33 49.55 59.33 59.55 59.33 59.55 59.33 59.55 59.33 59.55 5
60.01 46.01 14 60.29	60.01 46.01 46.01 46.6 60.29 46.12 46.12 46.12 60.29 60.29	60.01 46.01 46.01 46.02 46.5 46.45 60.29 46.12 46.12 43.61 14.33 43.61 14.33 43.61 16.69 60.18 60.18 60.18 60.18 60.18 60.18 60.18 15.31 15.31 16.61 16.63 1	60.01 46.01 14 60.29 60.29 60.29 60.29 60.29 60.29 60.29 60.29 14.33 16.69 16.60 16.	60.01 46.01 14 60.29 46.6 13.68 60.29 46.12 14.33 60.29 60.29 46.12 14.33 16.69 43.61 16.69 43.18 43.18 43.18 45.07 45.07 45.07 15.75 60.31 60.21 60.21 60.21 60.21 60.21 60.21 60.21 60.22 60.29 60.20 60.2
45.78 12.44 58.5	45.78 12.44 58.5 58.5 58.5 13.53 13.53 13.53 13.53 13.53 13.53 13.53 13.53	45.78 12.44 58.5 58.5 13.53 58.5 58.66 13.53 58.45 58.45 58.34 58.34 58.34 58.34 58.34 58.34 58.34 58.34 58.34 58.34 58.34 58.34 58.31 58.31 58.31 58.31 58.31 58.31 58.31 58.31 58.31 58.31 58.31 58.32 58.32 58.33 58.33 58.33 58.33 58.33 58.33 58.33 58.35 58.35 58.55 57.55 57.55 57.55 57.55 57.55 57.55 57.55 57.55 57.55 57.55 57.55 57.55 57.55 57.55 575	45.78 12.44 58.5 58.5 58.5 58.5 58.5 58.5 58.66 58.45 58.45 58.34 14.14 14.14 13.53 13.53 14.14 14.15 58.33 13.51 13.53 13.53 13.53 13.53 13.53 13.53 13.53 13.53 14.15 58.85 58.86 58.86 58.86 58.34 58.34 58.34 58.33 13.53 13.53 58.555	45.78 12.44 58.5 58.5 58.5 58.5 58.5 58.66 58.66 58.66 58.66 58.66 58.34 14.14 58.34 58.34 58.34 58.34 58.34 58.34 58.34 58.34 58.34 58.34 58.34 58.34 58.34 58.35 13.53 14.55 14.55 14.55 15.55 13.53 13.53 13.53 13.53 13.53 13.53 13.53 14.55 14.55 15.55
44.45 13.47 58.12	44, 45 13, 47 58, 12 58, 12 58, 14 58, 28 58, 44 58, 45 58, 45 58, 47 58, 47 59, 47 50, 40 50, 40, 40 50, 40, 40, 40 50, 40, 40, 40 50, 40, 40, 40, 40, 40, 40, 40, 40, 40, 4	44, 45 44, 47 58, 12 58, 12 58, 14 44, 03 56, 86 56, 86 7, 996 7, 996 58, 1 58, 1 58	44, 45 44, 47 58, 12 58, 12	44:45 44:45 13:47 58:12 58:12 58:12 58:12 58:12 58:12 58:12 58:12 58:12 58:12 58:12 58:14 58:18 7.996 7.996 7.996 7.996 7.996 7.996 7.996 7.996 7.996 7.996 7.933 7.933 59.18 59.18 59.18 59.18 59.18 59.18 59.18 59.18 59.18 59.18 59.18 59.18 59.18 59.18 50.18 50.18 50.18 50.18 50.18 50.18
58.22	58.22 41.28 58.42 40.55 58.62 58.62 58.62 58.62 58.62 59.92	58.22 41.28 16.94 58.42 58.42 58.62 39.92 39.92 39.92 38.25 58.35 58.35 40.65 41.13 41.13 41.13	58.22 41.28 58.42 58.42 40.55 17.28 58.62 58.62 39.92 17.71 17.71 58.35 58.35 58.35 17.71 17.71 58.35 58.35 37.81 17.71 58.31 37.81 21.13 37.81 58.42 58.42 58.67 58.35 58.35 58.35 58.31 58.42 58.42 58.42 58.67 58.42 58.42 58.67 58.42 58.42 58.67 58.67 58.67 58.67 58.67 58.67 58.67 58.67 58.67 58.67 58.65 58.67 58.77 58.67 58.77 57.77 58.77 58.77 57.777 57.777 57.777 57.777 57.7777 57.77777777	58.22 41.28 58.42 58.42 58.42 17.28 58.62 39.92 17.71 58.62 38.62 38.62 17.71 58.62 38.62 38.62 17.71 58.62 38.62 38.62 58.35 41.13 17.07 58.61 58.61 58.62 58.62 58.62 58.61 17.71 58.61 58.62 58.62 58.62 17.71 58.625
	01b		0 0 01P	a(E) R600a R600a e(E) a

Tablica 23. Rezultati analize za 180°C

Kao što možemo vidjeti prema slici 31, parametarskom analizom dobivamo rezultate najvećeg rada i tlakova prema kojima sustav radi. Kada iscrtamo W_{net}/p_{max} dijagram, odredimo granice optimizacije koje su u ovom slučaju vidljive prema tablici 25.

	1		1	1	2		1	2		1 🗖 2	2
25 bar	Wnet _{tot} [kW]	P _{maxHTS} [bar]	26 bar	Wnet _{tot} [kW]	P _{maxHTS} [bar]	27 bar	Wnet _{tot} [kW]	P _{maxHTS} [bar]	28 bar	Wnet _{tot} [kW]	P _{maxHTS} [bar]
Run 1	63,03	28	Run 1	63,15	28	Run 1	63,24	28	Run 1	63,32	28
Run 2	63,07	28,2	Run 2	63,19	28,2	Run 2	63,28	28,2	Run 2	63,35	28,11
Run 3	63,1	28,4	Run 3	63,23	28,4	Run 3	63,33	28,4	Run 3	63,38	28,21
Run 4	63,14	28,6	Run 4	63,27	28,6	Run 4	63,37	28,6	Run 4	63,41	28,32
Run 5	63,17	28,8	Run 5	63,31	28,8	Run 5	63,42	28,8	Run 5	63,43	28,42
Run 6	63,2	28,99	Run 6	63,35	28,99	Run 6	63,46	28,99	Run 6	63,46	28,53
Run 7	63,24	29,19	Run 7	63,38	29,19	Run 7	63,5	29,19	Run 7	63,49	28,63
Run 8	63,27	29,39	Run 8	63,42	29,39	Run 8	63,54	29,39	Run 8	63,51	28,74
Run 9	63,3	29,59	Run 9	63,46	29,59	Run 9	63,58	29,59	Run 9	63,54	28,84
Run 10	63,33	29,79	Run 10	63,49	29,79	Run 10	63,62	29,79	Run 10	63,56	28,95
Run 11	63,36	29,99	Run 11	63,52	29,99	Run 11	63,65	29,99	Run 11	63,59	29,05
Run 12	63,39	30,19	Run 12	63,56	30,19	Run 12	63,69	30,19	Run 12	63,61	29,16
Run 13	63,42	30,39	Run 13	63,59	30,39	Run 13	63,73	30,39	Run 13	63,63	29,26
Run 14	63,45	30,59	Run 14	63,63	30,59	Run 14	63,77	30,59	Run 14	63,66	29,37
Run 15	63,48	30,79	Run 15	63,66	30,79	Run 15	63,8	30,79	Run 15	63,68	29,47
Run 16	63,51	30,98	Run 16	63,69	30,98	Run 16	63,84	30,98	Run 16	63,71	29,58
Run 17	63,54	31,18	Run 17	63,73	31,18	Run 17	63,88	31,18	Run 17	63,73	29,68
Run 18	63,57	31,38	Run 18	63,76	31,38	Run 18	63,92	31,38	Run 18	63,75	29,79
Run 19	63,61	31,58	Run 19	63,8	31,58	Run 19	63,95	31,58	Run 19	63,77	29,89
Run 20	63,64	31,78	Run 20	63,84	31,78	Run 20	63,99	31,78	Run 20	63,8	30

Slika 29. Parametarska analiza R1234ze(Z)/R1234ze(E)

Slika 30. Grafički prikaz parametarke analize za 180°C

Na slici 31. možemo vidjet da u ovom slučaju kontinuiranim porastom tlaka raste i W_{net} , sve do kritične točke za odabrani fluid.

Tablica 24.	Vrijednosti	dobivene	parametarskom	analizom
-------------	-------------	----------	---------------	----------

Wnet	63,99 kW
PmaxHTS	31,78 bar
PmaxLTS	26 bar

U tablici 24. su prikazani najvažniji rezultati vezani za trenutnu kombinaciju fluida te su to tlakovi na kojima ciklus daje najveći stupanj rada. Dok u tablici 25. imamo odabrane vrijednosti granica za proces optimizacije.

Tablica 25. Odabrane granice za 180°C

	Gornja granica vrijednosti	Donja granica vrijednosti
DeltaT_HTS	5°C	20°C
DeltaT_LTS	5°C	20°C
PLTSmax	24 bar	27 bar
PHSmax	30 bar	31,78 bar

Odabir vrijednosti granica prema grafičkom prikazu na slici 31, prema tim granicama pokrećemo optimizaciju u zadanim uvjetima. Osim granica u kojem će se program tražiti maksimum, u tablici 26 zadani su sljedeći uvijeti unutar programskog paketa.

Tablica 26. Odabrani parametri programa za 180°C

Područje traženja	Maksimum
Metoda	Genetska metoda
Broj jedinki	100
Broj generacija	200
Maksimalna stopa mutacije	0,2625

Optimizacijom proračuna dobivamo T-s dijagram prema slici 32. Detaljnije rezultate optimizacije ciklusa definiravmo tablicom 27. te iz nje možemo iščitati sve bitnije podatke.

Slika 31. T-s dijagram postrojenja za 180°C

Tablica 27. Rezultati dobiveni optimizacijom za 180°C

Konfiguracija:	DS paralel HTS PH1 subcritical ORC SH SC ACC					
wf HTS/wf LTS:	R1234ze(Z)/R1234ze(E)					
T _{geo,in} :	180	(°C)	(m _{geo} =1,0(kg/s))			

Component (i)	E _{xf,i} (kW)	E _{xp,i} (kW)	E _{x0,i} (kW)	E _{xL,i} (kW)	Qi(kW)	Aui
HTS PH 1	18,43	13,55	4,882	8,8483	104,9	5,977
HTS PH 2	36,94	32,65	4,292	64,34	127,8	6,736
HTS EV	28,25	26,39	2,864	0	88,62	4,831
HTS SH	719,2	7,164	712	0	23,77	0,7789
HTS T	69,12	56,23	12,89	0	-	-
HTS CON	17,15	4,853	12,29	4,853	289,4	32,2
HTS P	4,797	3,607	1,189	0	-	-
LTS PH	13,14	28,57	1,722	28,57	87,07	9,174
LTS EV	19,65	16,28	3,373	0	82,38	4,572
LTS SH	2,975	2,31	0,6642	0	11,44	0,407
LTS T	23,51	19,2	4,307	0	-	-
LTS CON	9,747	2,718	7,029	2,718	149,2	15,65
LTS P	2,151	1,617	0,5344	0	-	-

Wnet:	63,94	kW				
η tot plant,Ex :	-5,496	%				
Wnet,HTS:	48,52	kW				
Wnet,LTS:	15,42	kW	HLTS plantEn:	3,509	Hнтs _{plantEn} :	7,159
Pнтs:	31,8	bar	HLTS cycleEn:	8,539	Hнтs _{cycleEn} :	14,21
P _{LTS} :	25,87	bar	HLTS plantEx:	24,14	H _{HTS} _{plantEx} :	-4,177
ΔTsh,lts:	5,392	°C	HLTS cycleEx:	43,76	H _{HTS} cycleEx:	-4,005
ΔTsh,hts:	5,153	°C				
Xmps	0,6452					
T _{geo,out} :	55,38	°C				
T(20)						

6. ZAKLJUČAK

Za potrebe pogona naprednog Rankine-ovog ciklusa, sa subkritičnom konfiguracijom koja sadrži dva stupanja, pareleni interni izmjenjivač topline, hlađenje radnog fluida zrakom te organskim radnim fluidom odabrani su fluidi sa najvećom radnom snagom. To su fluidi isobutane, R1234ze(E), R1234ze(Z) i R1234yf.

S obzirom da je utjecaj radnog fluida na okoliš vrla bitna stavka današnjice svaki od odabranih fluida ima vrlo mali utjecaj na okoliš što je vrlo bitna činjenica. Isto tako, svaki of fluida je dobavljiv na tržištu te nema problema sa opskrbom.

Na temelju provedene analize možemo vidjeti da se pri konstantnim uvjetima elektrane, uz povećanje temperature geotermanog fluida te varijacija različitih tlakova rad znantno povećava. Osim znatnog povećanja rada uz podizanje temperature negativan utjecaj dolazi kod smanjenja količine izbora radnih fluida pošto zbog previsokog tlaka isparavanja,

LITERATURA

[1] https://fchartsoftware.com/ees/

[2] https://www.techtarget.com/whatis/definition/Rankine-cycle

[3] Porić, L., EKSERGOEKONOMSKA ANALIZA GEOTERMALNE TERMOELEKTRANE NA BAZI RANKINEOVOG CIKLUSA S ORGANSKIM FLUIDOM, Karlovac, 2020.

[4] Guzović, Z., Majcen, B. Mogućnosti proizvodnje električne energije u Republici Hrvatskoj iz srednjotemperaturnih geotermalnih izvora. Zbornik radova 9. međunarodnog znanstveno-stručnog savjetovanja Energetska i procesna postrojenja i 4. međunarodnog foruma o obnovljivim izvorima energije, 1-19, 2010.

[5] Barišić, I., Primjena organskog Rankineovog ciklusa na nisko-temperaturne izvore topline, Zagreb, 2016.

[6] https://hr.m.wikipedia.org/wiki/Datoteka:T-s_dijagram_radni_fluidi.png

[7] DiPippo, R. Geothermal power plants: principles, applications, case studies and environmental impact. Butterworth-Heinemann, 2012. (21.9.2022.).

[8] https://fchart.com/ees/eeshelp/1s9tida.htm

[9] https://w-refrigerant.com/en/?s=R1234ze%28E%29

[10] https://w-refrigerant.com/en/?s=R1234yf

[11] https://w-refrigerant.com/en/?s=lsobutan

[12] Fukuda, S. Low GWP refrigerants R1234ze(E) and R1234ze(Z) for high temperature heat pumps, 2014.