Simulacijska optimizacija konstrukcije u svrhu smanjenja mase

Golešić, Maja

Undergraduate thesis / Završni rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Karlovac University of Applied Sciences / Veleučilište u Karlovcu

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:128:650649

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-09-06

Repository / Repozitorij:

Repository of Karlovac University of Applied Sciences - Institutional Repository

VELEUČILIŠTE U KARLOVCU STROJARSKI ODJEL Stručni studij Strojarstva

Maja Golešić

SIMULACIJSKA OPTIMIZACIJA KONSTRUKCIJE U SVRHU SMANJENJA MASE

Završni rad

Karlovac, 2015.

VELEUČILIŠTE U KARLOVCU STROJARSKI ODJEL Stručni studij Strojarstva

Maja Golešić

SIMULACIJSKA OPTIMIZACIJA KONSTRUKCIJE U SVRHU SMANJENJA MASE

Završni rad

Mentor: Mag.ing.stroj. Josip Groš

Karlovac, 2015.

Izjavljujem da sam ovaj rad izradila samostalno koristeći stečena znanja tijekom studija i navedenu literaturu.

Zahvaljujem se svojim roditeljima na beskrajnom strpljenju i potpori tjekom svih ovih godina studiranja.

Zahvaljujem se svim kolegama i prijateljima na savijetima i pomoći tijekom studiranja.

Maja Golešić

Mjesto gdje se postavlja zadatak završnog rada kojeg dobivate kod mentora!

SADRŽAJ

SADRŽAJI
POPIS SLIKA III
SAŽETAKVI
1. UVOD
1.1 Općenito
1.2 CATIA 1
2. CATIA MODUL
2.1 CATIA modul " Product Engineering Optimizer"
2.2 Optimization 5
2.2.1 Kartica "Problem"
2.2.2. Kartica "Constraints"
2.2.3. Kartica "Computations results"11
2.3 Design Of Experiments 14
2.3.1. Kartica "Settings" 15
2.3.2. Kartica "Results" 17
2.3.3. Kartica "Prediction" 19
3. PRIMJERI OPTIMIZACIJE
3.1 Optimiranje grede 22
3.2 Optimiranje boce
3.3 Optimiranje nosača
3.4 Optimiranje I-grede 46
3.5 Optimiranje viličastog nosača 51
4. ZAKLJUČAK

PRILOZI	63
LITERATURA	64

POPIS SLIKA

Slika 1.	Odabir modula PEO 4
Slika 2.	Alatna traka PEO-a 4
Slika 3.	Izgled prozora za optimiranje 6
Slika 4.	Definiranje raspona i koraka7
Slika 5.	Izgled kartice "Constraints"
Slika 6.	Odabir parametara ograničenja 10
Slika 7.	Izgled kartice "Computations results" 11
Slika 8.	Sortiranje rezultata 12
Slika 9.	Odabir parametra krivulja 13
Slika 10.	Prikaz krivulja 13
Slika 11.	Povezanost sustava14
Slika 12.	Izgled kartice "Settings" 15
Slika 13.	Odabir parametara 16
Slika 14.	Prikaz čvora 17
Slika 15.	Izgled kartice "Results" 18
Slika 16.	Prikaz krivulja u DOE 19
Slika 17.	Prikaz kartice "Prediction" 20
Slika 18.	Dimenzije grede 22
Slika 19.	Izgled grede 22
Slika 20.	Izgled alatne trake i ikone "Formula"23
Slika 21.	Izrada parametara23
Slika 22.	Prikaz parametara u drvu 24
Slika 23.	Povezivanje parametra i dimenzija25
Slika 24.	Prikaz povezanih parametara s dimenzijama
Slika 25.	Prikaz raspodijele opterećenja na gredi 27
Slika 26.	Prikaz odabranih "Sensors"
Slika 27.	Prikaz parametara u DOE 28
Slika 28.	Definiranje raspona i koraka

Slika 29.	Rezultati DOE u Micorsoft Excel tablici	29
Slika 30.	Utjecaj ulaznih parametara na naprezanje	30
Slika 31.	Uvjeti optimizacije grede	31
Slika 32.	Izgled optimirane grede	32
Slika 33.	Izgled i parametri boce	34
Slika 34.	Rezultati za "Gradient Algorithm Without Constrain"	36
Slika 35.	Rezultati za "Simulated Annealing Algorithm"	37
Slika 36.	Usporedba konačnih rezultata optimiranja za oba algoritma	38
Slika 37.	Prikaz dimenzija koje će se optimirati	39
Slika 38.	FEM analiza nosača	40
Slika 39.	Izgled nosača i rezultati dobiveni "fast" brzinom	41
Slika 40.	Prikaz krivulja dobivenih "fast" brzinom	42
Slika 41.	Izgled nosača i rezultati dobiveni "medium" brzinom	42
Slika 42.	Prikaz krivulja dobivenih "medium" brzinom	43
Slika 43.	Izgled nosača i rezultati dobiveni "slow" brzinom	43
Slika 44.	Prikaz krivulja dobivenih "slow" brzinom	44
Slika 45.	Izgled nosača i rezultati dobiveni "infinite" brzinom	44
Slika 46.	Prikaz krivulja dobivenih "infinite" brzinom	45
Slika 47.	Prikaz izgleda i parametara I-grede	46
Slika 48.	Rezultati optimizacije I-grede u Micorsoft Excel tablici	48
Slika 49.	Prikaz odstupanja rezultata od traženih zahtjevima	49
Slika 50.	Konačan izgled i rezultati optimirane I-grede	50
Slika 51.	Izgled i parametri viličastog nosača	51
Slika 52.	Prikaz parametara "veliki r" i " mali r"	52
Slika 53.	Prikaz parametra "dubina utora"	52
Slika 54.	FEM analiza viličastog nosača	53
Slika 55.	Izgled i rezultati prve optimizacije viličastog nosača	55
Slika 56.	Tablica s rezultatima prve optimizacije	56
Slika 57.	Izgled i rezultati druge optimizacije viličastog nosača	57

Slika 58.	Tablica s rezultatima druge optimizacije	58
Slika 59.	Izgled i rezultati treće optimizacije viličastog nosača	59
Slika 60.	Tablica s rezultatima treće optimizacije	60
Slika 61.	Rezultati nakon ponovljene FEM analize	61

SAŽETAK

U završnom radu opisan je i analiziran CATIA modul za optimiranje, Product Engineering Optimizer".

Prvi dio podijeljen je u dvije velike cjeline "Optimization" i "Design Of Experiments". U obje cjeline su detaljno opisani i objašnjeni svrha i značenje svakog dijela prilikom postavljanja problema bilo optimizacije u "Optimization" ili virtualnog testa u "Design Of Experiments".

U drugom dijelu je kroz primjere prikazan rad u "Optimization" i "Design Of Experiments". Prikazane su mogućnosti i varijacije u konačnim rezultatima optimizacije s obzirom na odabir postavki.

1. UVOD

1.1 Općenito

U današnje vrijeme zbog globalne konkurentnosti traži se da projektirani proizvod osim bezprijekorne funkcionalnosti bude i najbolji među konkurentima.

Kriteriji koji igraju veliku ulogu u tome su: dimenzije, vrijeme izrade, kompatibilnost, pouzdanost, trajnost, težina i cijena.

Stoga veliku važnost u izradi proizvoda ima optimizacija. Osnovni cilj optimizacije je naći najbolje rješenje za zadane uvjete..

Optimiranje nije samo proces i način postavljanja inženjerskog zadatka već i alat koji pomaže u donošenju odluka u najširem smislu. Inženjeri su oduvijek pokušavali intuitivnim putem optimirati procese, no takav način je vrlo subjektivan i podložan greškama. Postupci intuitivnog optimiranja baziraju se na intuiciji, profesionalnom iskustvu, brojnim pokušajima itd.

Danas je uz odgovarajuće algoritme, programske alate i uz primjenu računala velike snage moguće je optimiranje temeljeno na računalnoj simulaciji fizičkih modela.

Prednosti virtualnih modela je ta što su izrada i analiza naspram fizičkih modela jeftiniji i ušteda vremena je velika.

Postupci optimiranja primjenjuju se u cijelom nizu linearnih i nelinearnih problema, takvi su i problemi optimiranja mehaničkih konstrukcija.

U završnom radu prikazati će se mogućnosti optimiranja u programskom paketu Catia.

1.2 CATIA

CATIA je skraćenica od Computer-aided Three-dimensional Interactive Application (računalom podržan, trodimenzionalni interaktivni programski paket). [1]

Program je razvijen od strane tvrtke pod imenom Dassault Systemes u ranim osamdesetim godinama prošlog stoljeća, prvenstveno za potrebe avio industrije.

Program je dalje razvijan uz podršku tvrtke IBM.

Mogućnosti CATIA-e su ogromne jer osim crtanja strojnih elemenata omogućuje njihovo proračunavanje s obzirom na čvrstoću odabranih materijala, izradu NC programa za NC i CNC strojeve, simulaciju obrade i niz drugih pogodnosti važnih u zamišljanju određenog proizvoda i njegovoj izradi.

Najviše se koristi u brodogradnji, avio i auto industriji, te drugim industrijskim granama.

2. CATIA MODUL

CATIA se sastoji od modula. Svaki modul je specijaliziran za određeno područje dizajna. Najpoznatiji moduli su Sketcher, Part Design, Assembly, Stress Analysis, Drafting, Simulation...[2]

2.1 CATIA modul " Product Engineering Optimizer"

"Product Engineering Optimizer" je modul namjenjen za optimizaciju. Koristeći se iterativnim metodama omogućuje optimiranje bilo kojeg parametra.[3]

Nudi mogućnost: -optimiranja baziranog na geometriji modela

-optimiranja baziranog na metodi konačnih elemenata

-virtualnih testiranja (DOE) u svrhu dobivanja informacija o ponašanju modela u zadanim uvjetima

-rješavanje problema ispunjenjem zadanih ograničenja [4]

Pristup "Product Engineering Optimizer" radnom okruženju je preko Start menija, spuštanjem mišem do Knowledgeware, otvara se dodatni padajući meni u kojem će se kliknuti na "Product Engineering Optimizer" (Slika 1).

Izgled samog radnog okruženja je promijenjen u smislu novih alatnih traka, na kojima se nalaze alati čija svrha je pomoći korisniku da na što lakši način dođe do traženih rezultata. U ovom slučaju optimira željeni model.

Na slici (Slika 2) vidi se izgled alatne trake i ikona za "Product Engineering Optimizer".

Pr	odu	ict	En.		83
	L	•	Ð	<u>H</u>	#

Slika 2. Alatna traka PEO-a

2.2 Optimization

Ovaj alat omogućuje optimiranje modela, na način da mu se nađe najmanja, najveća ili tražena vrijednost određenog parametra. To može biti masa, volumen, naprezanje i sl.

Kako bi se došlo do traženog rezultata, zadati će se koje dimenzije se smiju mijenjati i kojih se uvjeta mora pridržavati.

Nakon što se pristupilo "Product Engineering Optimizer" radnoj površini, mišem će se kliknuti na ikonu "Optimization".

Automatski se otvara prozor na kojem se nalaze tri kartice: "Problem", "Constraints" i "Computated results" (Slika 3)

Optimization	?			
Problem Constraints Computati	ions results			
Optimization type: Minimization				
Optimized parameter				
?	Select 5x			
Target value: Minimum				
Free Parameters				
Name Value Inf	f. Range Sup. Range Step			
Edit list	Edit ranges and step			
Available algorithms				
Algorithm type : Simulated Annealing A	Algorithm 🗨			
Selected algorithm settings				
Running Criteria				
Convergence speed : Fast				
A lermination criteria Maximum number of undates	lboo			
	vements 50			
Maximum time (minutes)	5			
Optimization data				
Save optimization data				
Run Behavior				
O With visualization update 🔮 Without visualization update				
Disconnect Undo log				
· · · · · · · · · · · · · · · · · · ·				
Run optimization				
	OK Apply Cancel			

Slika 3. Izgled prozora za optimiranje

2.2.1 Kartica "Problem"

Na kartici "Problem" pod "Optimization type" definira se tip optimizacije ("Minimization", "Maximization", "Target Value" ili "Only constraints"). Time se određuje da li je tražena najmanja, najveća, ciljana (točna) vrijednost ili optimiranje se vrši isključivo bazirajući se na zadane uvjete.

Nakon toga bira se parametar koji će se optimirati, tj. čija maksimalna, minimalna ili ciljana vrijednost se traži.

Pod "Free Parameters" se definiraju dimenzije čijom promjenom vrijednosti će se doći do željenog rezultata.

Za svaku od dimenzija može se definirati raspon (vrijednost "od-do") (na slici označeno s 1) i korak (podijela) (na slici označeno s 2) (Slika 4). Podjelom se određuje kako će se ta dimenzija uzeti u obzir prilikom proračuna optimizacije. Prevelik korak je beskoristan a mali korak može spriječiti brzu konvergenciju rješenja. Ako nismo sigurni, ne definiramo korak , ali odredimo raspone dimenzija.

	Modify the range:	s and the step 📪 💌
$\mathbf{O}^{\mathbf{+}}$	🗌 Inf. Range	•
	🗌 Sup. Range	
6	🗌 Step	0mm 🚔
C		OK Gancel

Slika 4. Definiranje raspona i koraka

Nakon toga definira se tip algoritma po kojem će se optimirati.

Na raspolaganju ima pet tipova algoritama, koje se može podijeliti na dvije velike cjeline s obzirom na način pretraživanja podataka.

To je "Simulated Annealing Algorithm" koji vrši globalnu pretragu podataka koja kako vrijeme prolazi prelazi u lokalno pretraživanje. Svi uvjeti i ograničenja u algoritam se uvode odjednom. Obično se koristi kod nelinearnih, diskontinuiranih funkcija, te se preporučuje korištenje kada je nepoznat oblik funkcije.

"Local Algorithm For Constraints and Priorities", "Algorithm For Constraints and Derevities Providers", "Gradient Algorithm Without Constraint" i "Gradient Algorithm With Constraint(s)" su algoritmi koji vrše lokalno pretraživanje podataka. Za korištenje ovih algoritama sva ograničenja moraju biti diferencijabilna i svojstva funkcije poznata. Dolaze brže do rezultata nego "Simulated Annealing Algorithm", ali rade na manjem opsegu funkcija.

Idući korak je odabir brzine konvergencije. Što je brzina sporija rezultati optimizacije su točniji, ali ukupan broj rješenja je manji.

Pod "Termination Criteria" određuje se maksimalni broj iteracija, broj iteracija bez poboljšanja rezultata i maksimalno vrijeme trajanja optimizacije.

Označavanjem "Save optimization data" svi rezultati će biti spremljeni u excel datoteku.

Također može se izabrati između "With vizualization update" ili "Without vizualization update" s čime se određuje, da li će se vidjeti proces optimizacije na modelu u toku samog proračuna.

2.2.2. Kartica "Constraints"

Na ovoj katrici određuju se uvjeti i ograničenja koja se uzimaju u obzir prilikom proračuna, a bitna su za konačni rezultat optimizacije (Slika 5).

Optimization	? <mark>×</mark>
Problem Constraints Computations results	
Name Body Satisfied Distance to satisfac Precisi Activity	Weight
New New (derivatives provider) Delete	
- Constraint definition	
Name:	
Comment	
Satisfied: Activity: False Veight: 0	[]
Body: Edit	
Run optimization	
ОК ОК Арріу	/ 🥥 Cancel

Slika 5. Izgled kartice "Constraints"

Pritiskom na "New" otvara se novi prozor s popisom svih parametara koji se mogu iskoristiti za definiranje ograničenja (Slika 6).

Optimization Constraints Edito	or			? X
			Line: 1	₩ ¤.
Finite Element Model.1\Max	kimum Von Mises.3∖Maximur	n Von Mises`		
Dictionary	Members of Parameters	Members of All		
Design Table Operators Pointer on value functions Point Constructors Law Operations Constructors Line Constructors Circle Constructors String Direction Constructors List Measures Surface Constructors Part Measures Plane Constructors Part Measures Plane Constructors Analysis operators Object Math Units Constant	All Renamed parameters Boolean Length Angle Severity CstAttr, Mode String Pressure Real Density Inverse temperature Element Order MSHOctreeCriteria Integer Force Energy Mass Analysis Set Set Of Relations Plane Properties Feature Property Preprocessing Entity Restraints Loads Analysis Results Restraint Load Optimization	Nodes and Elements/OCTREE Tetrahedron Mesh.1: nosac/Corneral Nodes and Elements/OCTREE Tetrahedron Mesh.1: nosac/Unterior Size' Nodes and Elements/OCTREE Tetrahedron Mesh.1: nosac/Unterior Size' Nodes and Elements/OCTREE Tetrahedron Mesh.1: nosac/Viceorotional Sag' Nodes and Elements/OCTREE Tetrahedron Mesh.1: nosac/Viceorotional Sag Value' Nodes and Elements/OCTREE Tetrahedron Mesh.1: nosac/Wiceorotional Sag Value' Nodes and Elements/OCTREE Tetrahedron Mesh.1: nosac/Min Geometry Size' Nodes and Elements/OCTREE Tetrahedron Mesh.1: nosac/Min Size For Sag' Nodes and Elements/OCTREE Tetrahedron Mesh.2: Nosac'Min Size For Sag' Finite E		E
Finite Element Model.1\Max	kimum Von Mises.3\Maximun	n Von Mises 6,699e+007N_m2		
			🎱 ОК	Apply Cancel

Slika 6. Odabir parametara ograničenja

Nakon što je parametar izabran, znakovima (<, > ili ==) definira se odnos trenutne veličine s onom koju želimo postiči.

Također može se postaviti odnos između parametra među sobom (npr. Visina-Širina>0mm). Pritiskom na "OK" ograničenje je upisano u glavni prozor na kartici "Constraints".

Uz ograničenje može se vidjeti da li je ono ispunjeno i prije početka same optimizacje. Ako nije, kolika je brojčana razlika do ispunjenja tog uvjeta.

Za svako ograničenje može se definirati odstupanje od traženog rezultata.

Aktivirati, odnosno deaktivirati pojedina ograničenja. Ako su deaktivirana, neće biti uzeta u obzir prilikom proračuna.

Pod "weight" se određuje važnost pojedinog ograničenja upisivanjem broja. Povećanjem broja raste i prioritet ograničenja.

Ograničenja se upisuju isključivo pojedinačno, jedno po jedno. Jednom kada su upisana redoslijed im se ne može mjenjati (jedino izbrisati).

2.2.3. Kartica "Computations results"

Nakon što je optimiranje završeno, na kartici "Computations results" mogu se vidjeti dobivena rješenja (Slika 7).

Optimization				? X	
Drahlam L. C.	neterinte	Computations results			
Problem Co	onstraints	Computations results			
Constraints pr	iorities used to	o sort the results			
Constraint.1	Constraint.2	Constraint.3 Constrai	nt.4 Constraint.5 (Constraint.6	
1	1	1 1	1 1		
•				F.	
Adjust prioriti	es from weigł	nts Reset p	priorities to 1		
- Settings of the	results sort -				
Historic sort:	displays the i	results in the computation	on order		
	ic sort: display	s the results from the b	est to the worst		
Results to displa		s the results from the b			
incours to dispit	o, Iali				
- Sorted results					
"Nb Eval"	Best (m4)	`I-greda\Inertia.1` (m4)	I-greda\Relations	Optimizat 🔺	
0	0,000055627	0,000055627	0,0008	_	
1	0,000055627	0,000050697	0,001246166	-	
2	0,000060672	0,000060672	0,000380999		
3	0,000060672	0,000068285	0,000220754		
4	0,000065418	0,000065418	0,000272392		
5	0,000065418	0,000072140	0,001200803		
7	0,000065418	0,000005102	0,000577120		
8	0 000065418	0 000067475	0.000360128		
9	0.000065418	0.000078402	0.000644607		
10	0,000065418	0,000078246	0,00064072		
11	0,000065418	0,000078029	0,000635277		
12	0,000065418	0,000077725	0,000627658		
13	0,000065418	0,0000773	0,000616991		
14	0,000065418	0,000076708	0,000602057		
15	0,000065418	0,000075883	0,000581149		
16	0,000065418	0,000038769	0,003706134		
17	0,000065418	0,000080802	0,000693143		
18	0,000088959	0,000088959	0,00020307		
19	0,000088959	0,000103024	0,000/11622		
20	0,000088959	0,000098124	0,000118108		
22	0,0000000000000000	0.000073786	0.000555703		
22	0,0000000000	0,000073700	0,000333703	-	
				•	
		Apply values to parame	eters		
Curves					
Select parameters Show curves					
Run optimization					
	-		1.0	1	
		<u> </u>	OK S Apply	Cancel	

Slika 7. Izgled kartice "Computations results"

Rješenja su vidljiva jedino ako je prije početka optimiranja označen "Save optimization data".

Označavanjem "Historic sort" ili "Lexicographic sort" određuje se prikaz rezultata. Da li će biti posloženi po redosljedu kojim su dobiveni prilikom optimiranja ili od najboljeg prema najgorem rješenju.

Lista s rezultatima može se dodatno sortirati odabirom koje od rezultata želimo vidjeti (Slika 8).

Slika 8. Sortiranje rezultata

"Apply these values to parameters" omogućava da jedno od ponuđenih rješenja s liste (označi se red u kojem je) bude primjenjeno na model.

Pritiskom na "Select parameters" otvara se prozor u kojem se odabiru parametri čije krivulje želimo vidjeti. Izabrati se mogu samo oni koji su bili u procesu optimizacije (Slika 9).

Slika 9. Odabir parametra krivulja

Pritiskom na "Show curves" otvara se prozor u kojem su prikazane krivulje parametara, tj. kako su se njihove vrijednosti mjenjale kroz proces proračuna optimizacije (Slika 10).

Na desnoj strani se nalazi popis svih parametara čije krivulje su prikazane. Svaki od parametara je označen posebnom bojom, tj. bojom kojom je napisan na desnoj strani, tom bojom je prikazan na lijevoj. Klikom na parametar na desnoj strani, naziv parametra se prikazuje na vrhu ordinate.

Grafikoni pomažu analizirati ponašanje funkcija i parametra tijekom optimizacije.

Zumiranjem dijagrama može se vidjeti da je sastavljen od točaka koje su međusobno povezane linijama. Svaka točka predstavlja jedno od rješenja s liste. Duplim klikom na točku otvara se prozor u kojem je usporedba trenutnih vrijednosti parametara s odabranima.

Također postoji mogućnost da se odabrani parametri iz dijagrama primjene na model.

2.3 Design Of Experiments

Ovaj alat daje mogućnost izrade virtualnih eksperimenata s proizvoljnim brojem parametara.

Daje uvid u: - međusobnu povezanost parametara

- -radi predviđanja rezultata
- prepoznaje koji od parametara je najutjecajniji

Prikazuje kako promjena ulaznih parametara djeluje na cijeli sustav, odnosno na izlazne parametre (Slika 11).

Slika 11. Povezanost sustava

Pritiskom na ikonu "Design Of Experiments" otvara se prozor s tri kartice: "Settings", "Results" i "Perdiction".

2.3.1. Kartica "Settings"

Na ovoj kartici definira se koji su ulazni parametri i njihov raspon, odnosno od koje najmanje, pa do koje najveće brojčane vrijednosti će se provesti analiza. Također se određuje broj razina (čvorova) pojedinog ulaznog parametra, te izlazne parametre (Slika 12).

Des	ign Of Exp	eriments			? ×
	Settings	Results	Prediction		
	-Select inp	ut paramete	ers		
	Name		Inf. Range	Sup, Range	Nb of Levels
					·'
	Edit list		Modi	fy ranges and/or n	umber of levels
	Select out	put parame	ters		
	Name				L
					00
	Edit list				
	Number of Dutput file	updates:		0	* * * * * * * * * * * * * * * * * * * *
	Save cur	ves in the o	utput file (for Exce	l files only)	
	Run DOE	without fil	ling the undo log		
			Run DO	E	
-					
				OK 🌒 Ap	ply 🧧 🥥 Cancel
1000					

Slika 12. Izgled kartice "Settings"

Ulazni parametri su izabrani pritiskom na gumb "Edit list".

Otvara se prozor na čijoj lijevoj strani se nalazi popis svih parametara. S popisa se označe željeni parametri, te uz pomoć strelice prebace na desnu stranu i potvrde s "OK" (Slika 13).

Select the input parameters	8	23
Filter On optimizacija grede Filter Name : * Filter Type : All Available parameters: `optimirana greda\PartBody\Pad.1\FirstLimit\Length` `optimirana greda\PartBody\Pad.1\SecondLimit\Length` `optimirana greda\PartBody\Pad.1\ThickThin1` `optimirana greda\PartBody\Pad.1\ThickThin2` `partBody\Iron\Iron.1.1\Young Modulus` 'PartBody\Iron\Iron.1.1\Poisson Ratio` 'PartBody\Iron\Iron.1.1\Poisson Ratio` 'PartBody\Iron\Iron.1.1\Thermal Expansion` 'PartBody\Iron\Iron.1.1\Thermal Expansion` 'PartBody\Iron\Iron\Iron.1.1\Thermal Expansion` 'PartBody\Iron\Iron\Iron.1.1\Thermal Expansion` 'PartBody\Iron\Iron\Iron.1.1\Thermal Expansion` 'PartBody\Iron\Iron\Iron\Iron\Iron\Iron\Iron\Iron		
<u> </u>	ок 🧕	Cancel

Slika 13. Odabir parametara

Nakon toga označiti će se ulazni parametar i kliknuti na gumb "Modify ranges and/or number of levels" da bi se definirao raspon minimalne i maksimalne vrijednosti i broj razina (čvorova) (Slika 14).

Slika 14. Prikaz čvora

Ukupan broj rješenja u analizi je jednak umnošku svih brojeva razina. Na slici (Slika 14) to je 40.

Izlazni parametri izabrani su na jednak način kao i ulazni.

Označavanjem "Save curves in the output file" svi dobiveni rezultati biti će spremljeni u excel datoteku.

2.3.2. Kartica "Results"

Ova katrica je jedino viđljiva nakon što je analiza završena (Slika 15).

Des	ign Of Exp	eriments			? <mark>×</mark>
	e		e 1		
	Settings	Results Predic	tion		
[Table of e	experiments			
	'Nb Eval'	`optimirana gree	la\visina` `optimirana greda	a\širina` `Finite Element Model	.1\Mass.2\Mass` Finite Ele 🔺
	1	10mm	10mm	0,142kg	6,687e+0(
	2	20mm	10mm	0,283kg	2,274e+0(
	3	30mm	10mm	0,425kg	1,051e+0(
	4	40mm	10mm	0,567kg	6,215e+0(
	5	50mm	10mm	0,708kg	4,854e+0(
	6	60mm	10mm	0,85kg	3,821e+0(
	7	70mm	10mm	0,992kg	4,635e+0(
	8	80mm	10mm	1,133kg	3,703e+0(
	9	10mm	20mm	0,283kg	3,289e+0(
	10	20mm	20mm	0,567kg	1,119e+0(
	11	30mm	20mm	0,85kg	5,191e+0(
	12	40mm	20mm	1,133kg	3,129e+0(
	13	50mm	20mm	1,417kg	4,171e+0(
	14	60mm	20mm	1,7kg	2,949e+0(
	15	70mm	20mm	1,983kg	4,015e+0(
	16	80mm	20mm	2,267kg	2,632e+0(
	17	10mm	30mm	0,425kg	2,332e+0(
	18	20mm	30mm	0,85kg	7,386e+0(
	19	30mm	30mm	1,275kg	3,474e+0(
	20	40mm	30mm	1,7kg	2,084e+0(
	21	50mm	30mm	2,125kg	1,704e+0(
	22	60mm	30mm	2,55kg	1,651e+0(
	23	70mm	30mm	2,975kg	1,64e+00
	24	80mm	30mm	3,4kg	1,618e+0(
	25	10mm	40mm	0,567kg	1,561e+0(
	26	20mm	40mm	1,133kg	5,454e+0(
	27	30mm	40mm	1,7kg	2,566e+0(
	28	40mm	40mm	2,267kg	1,554e+0(
	20	50.000	40	2 0221-4	2 204 01
	•				,
				hand have 1	
			Арр	ly values	

Γ	Generated	d curves			
	Available c	urves visina' on the	output : `optimizacija grede	Finite Element Model.1\Mass.2	2\Mass`
-					
OK Control Control					
UK Apply Cancel					

Slika 15. Izgled kartice "Results"

Prikazani rezultati su dobiveni analizom svakog čvora.

Označavanjem željenog rezultata s liste i klikom na gumb "Apply values", dobivene vrijednosti su primjenjene na model.

Također pomoću krivulja moguće je vidjeti kako pojedini ulazni parametar ima utjecaj na pojedini izlazni i/ili kako svi ulazni parametri imaju utjecaj na pojedini izlazni. Krivulje se izabiru pod "Available curves". Traženi prikaz krivulja vidi se u zasebnom prozoru (Slika 16).

Slika 16. Prikaz krivulja u DOE

2.3.3. Kartica "Prediction"

Ova kartica predstavlja matematički model koji se koristi za dobivanje teorijske vrijednosti izlazog parametra obzirom na specifičnu konfiguraciju ulaznih parametara.

Ona je također dostupna jedino nakon završene analize (Slika 17).

Settings Results Prediction	
	1
Name Inf Pange Sup Pange Value	
ontimirana greda V., 10mm 80mm 29.876mm	
`optimirana greda\ši 10mm 80mm 10mm	
Selected parameter value	
Run prediction	
Predicted response for each output	
Name Value	
'Finite Element Model.1\Mass.2\Mass` 0,42323kg	
`Finite Element Model.1\Maximum Von Mises.3\Maximum Von Mises` 105,975MPa	
	,
	Cancel

Slika 17. Prikaz kartice "Prediction"

Predviđanja se mogu dobiti na dva načina:

1. računanjem teorijske vrijednosti čvora:

-na kartici "Results" odabrati će se redak i kliknuti na "Apply values"

-zatim na kartici "Prediction" kliknuti na "Run prediction"

-rezultati izlaznih parametara biti će prikazani u doljnjem prozoru (Slika 17)

računanje teorijske vrijednosti čvora unutar definiranog raspona (izvan mreže):

-na kartici "Prediction" označiti će se željeni parametar

-pod "Selected Parametar value" upisati će se željena vrijednost i potvrditi s enter

-postupak se ponovlja na svim parametrima čija vrijednost se želi promjeniti

-nakon toga će se pritisnuti gumb "Run prediction"

-rezultati izlaznih parametara biti će prikazani u doljnjem prozoru (Slika 17)

3. PRIMJERI OPTIMIZACIJE

3.1 Optimiranje grede

U ovom primjeru će se na najednostavniji način pokazati kako optimirati gredu koja je na jednom kraju uklještena, a na drugom opterećena silom. Ali prvo će se u "Design Of Experiments" provjeriti međusobni odnos i utjecaj parametara koji se kasnije žele iskoristiti u samom procesu optimizacije [5].

Prvi korak je modeliranje grede u "Part Design" (Slika 18 i Slika 19).

Radi lakšeg snalaženja i boljeg pregleda, napravljeni su parametri za dimenzije koji će se kasnije optimirati. Parametri su kreirani na način da klikom miša na ikonu "Formula" u prozoru će se izabrati tip parametra koji se želi napraviti (Slika 20 i Slika 21).

Slika 20. Izgled alatne trake i ikone "Formula"

Import Filter On greda Filter Name : Filter Type :	
Filter Type : All	
Double click on a parameter to edit it	_
Parameter Value Formula Active	<u> </u>
Geometrical Set.J.\Sketch.J.\Activity true	
Geometrical Set.J.Sketch.J.AbsoluteAxis/Activity true	
Geometrical Set.1\SketCh.1\Parallelism.1\ACtivity true	
Geometrical Set.1(Sketch.1)Parallelism.1(Mode Constrained	
Geometrical Set.1\SketCh.1\Parallelism.2\ACtivity true	
Geometrical Set.1\SketCh.1\Parallelism.2\Wode Constrained	
Geometrical Set.1(Sketch.1)Parallelism.3(Activity true	-
Edit name or value of the current parameter	10000
Geometrical Set.1\Sketch.1\Activity true	
	_
New Parameter of type Length Ville Value Add Formul	3
Delete Parameter Delete Formu	la
OK Apply Can	:el

Slika 21. Izrada parametara

U ovom slučaju izabrani parametri su vezani za duljinu (lenght). Imena su im "visina" i "širina", te su im upisane željene brojčane vrijednosti. (Slika 22).

Slika 22. Prikaz parametara u drvu

Da bi se povezalo parametre s dimenzijama crteža, u "Sketcher"-u s desnim klikom tipke miša na dimenziju selektirati će se strelica uz "Offset object" pa zatim kliknuti na "Edit Formula". Otvorio se prozor u kojemu će se odrediti s kojim parametrom je ta dimenzija povezana (Slika 23).

Formula Editor : PartBody\Pad.1\FirstLimit\Length							
1. Ale		14 A					
PartBody\Pad.1\FirstLimit\Le	ength	-					
Dictionary	Members of Parameters	Members of All					
Parameters Design Table	All Reneward newspapers	Geometrical Set.1\Sketch.1\Activity	<u>^</u>				
Operators	Roolean	Geometrical Set 1/Sketch 1/Parallelism 1/Activity					
Pointer on value functions	CstAttr Mode	'Geometrical Set.1\Sketch.1\Parallelism.1\Mode'					
Point Constructors	Length	`Geometrical Set.1\Sketch.1\Parallelism.2\Activity`					
Law	String	`Geometrical Set.1\Sketch.1\Parallelism.2\Mode`					
Operations Constructors	Pressure	`Geometrical Set.1\Sketch.1\Parallelism.3\Activity`					
Line Constructors	Real	Geometrical Set.1\Sketch.1\Parallelism.3\Mode					
Circle Constructors	Density	Geometrical Set 1\Sketch 1\Parallelism.4\Activity					
Direction Constructors	Feature	Geometrical Set.1\Sketch.1\Equidistance.5\Activity`					
List	Plane	`Geometrical Set.1\Sketch.1\Equidistance.5\Mode`					
Measures	Solid	`Geometrical Set.1\Sketch.1\Equidistance.6\Activity`					
Surface Constructors	Curve	`Geometrical Set.1\Sketch.1\Equidistance.6\Mode`					
Wireframe Constructors	Constraint	Geometrical Set.1\Sketch.1\Perpendicularity.7\Activity					
Part Measures	Set of parameters	Geometrical Set.1\Sketch.1\Perpendicularity./\Mode	E				
Object	Formula	Geometrical Set 1/Sketch 1/Offset 8/Activity					
Math		'Geometrical Set.1\Sketch.1\Offset.8\Mode'					
Units		`Geometrical Set.1\Sketch.1\Offset.9\Offset`					
Constant		'Geometrical Set.1\Sketch.1\Offset.9\Activity'					
		`Geometrical Set.1\Sketch.1\Offset.9\Mode`					
		PartBody\Pad.1\FirstLimit\Length					
		PartBody\Pad.1\SecondLimit\Length					
		PartBody/Pad.1/ThickThin2					
		PartBody\Pad.1\Activity					
		PartBody\Material					
		visina					
		Relations\Formula.1\Activity					
		PartBody/Iron/Iron.1.1/Young Modulus`					
		`PartBody\Iron\Iron.1.1\Poisson Ratio`					
		`PartBody\Iron\Iron.1.1\Density`					
		`PartBody\Iron\Iron.1.1\Thermal Expansion`					
		PartBody\Iron\Iron.1.1\Yield Strength					
		greda/Part Number					
		greda/Revision					
		greda\Product Description`	1				
		greda\Definition					
		greda					
		ixy plane					
		yz piane `zx plane`					
		'Geometrical Set.1'	+				
	1						
OK Gancel							

Slika 23. Povezivanje parametra i dimenzija

Zna se da su parametri povezani s dimenzijama ako se uz dimenzije vidi f(x) (Slika 24).

Slika 24. Prikaz povezanih parametara s dimenzijama

Nakon toga će se na "Apply Material" izabrati željezo (iron) kao materijal za gredu.

U "Generative Structural Analysis" za konačne elemente su izabrani linearni tetraedri čiji parametri (veličina i gustoća) mesha su 5mm i 1mm.

Greda je na jednom kraju uklještena, a na drugom opterećena silom od 1000 N. U drvetu će se pod "Sensors" osim "Energy" odabrati "Maximum von Mises" i "Mass" (Slika 25 i Slika 26).

U "Product Engineering Optimizer" mišem će se kliknuti na ikonu "Design of Experiments".

Pojavio se prozor u kojemu se izaberu ulazni, odnosno izlazni parametri. Za ulazne parametre su izabrani visina i širina, a za izlazne masa i naprezanje (Maximum Von Mises). Za ulazne parametre određeno je da mogu biti najmanje 10mm, a najviše 80mm duljine. Taj raspon duljine je podijeljen na 8 dijelova. Catia je automatski izračunala da će biti maksimalno 64 kombinacija rješenja, što je dobila umnoškom svih podjela ulaznih parametara (u našem slučaju 8*8) (Slika 27 i Slika 28).

De	sign Of Experiments					ବୃ	23
	Settings Results Pr Select input parameters	ediction					
	Name	Inf. Range	Sup.	Range	Nb of Levels		
	`optimirana greda\visina`	10mm	80m	m	8		
	`optimirana greda\širina`	10mm	80m	m	8		
	Edit list			Modify rang	jes and/or num	ber of le	vels
ſ	 Select output parameters 	-					
	Name 'Finite Element Model.1\N 'Finite Element Model.1\N	Aass.2\Mass` Aaximum Von Mise	es.3\M	aximum Von	Mises`		
	Edit list						
	Number of updates: Output file:			64 D:\završni\o	atia vježbe∖gre	9	
	Save curves in the output	ut file (for Excel file	s only)				
	Run DOE without filling	the undo log					
		Ru	n DOE	1			
				🎱 ок	Apply		Cancel

Slika 27. Prikaz parametara u DOE

Modify ranges	/number of	? <mark>x</mark>
Inf. Range	10mm	-
Sup. Range	80mm	-
Nb of levels	8	-
	🗿 ОК	Cancel

Slika 28. Definiranje raspona i koraka

Klikom na "Run DOE", pojavio se prozor u kojem će se upisati ime i odrediti mjesto gdje će CATIA spremiti rezultate u obliku Microsoft Excel tablice.

U tablici se može vidjeti kako će se mjenjati masa i naprezanje s obzirom na promjenu dimenzija, tj. na koji način promjena ulaznih parametara utječe na izlazne (Slika 29).

) 🖬 🤊	• ° • 🙆	=		Chart Tools		do	e [Compi	tibility Mode] -	Microsoft	Excel										- 0 <mark>- x</mark>
C	Home	Insert	Page Layout	Formulas Data Rev	view View Design	Layout For	mat														0 - 0
	K Cut	e by	Calibri (Body) 🔻	10 · A a ==	wrap Text	Text	,)(= 0, 00			Normal		Bad	Good	1	Neutral			₽.	Σ Au I Fill	toSum * A	A I
Pas	For	mat Painter	BIU		📕 🐖 🐖 🔤 Merge & Cer	ter *	,00 .00	Format	ting * as Table *		tion	Check Cell	Explo				insert	Delete Forma	rt 🖉 📿 Cle	ar∗ Fill	er* Select*
	Clipboar	d 🔍	Font	R.	Alignment	S NU	mber 🕫					Styles						Cells		Editing	
_	Chart 1	0 + (• fx																		
	А	В	С	D	E	F	G	н	1	J	К	L	м	N	0	Р	Q	R	S	т	U
1	'Nb Eval'	visina (mm)	`širina` (mm)	`optimizacija grede\Finite Element Model.1\Mass.2\Mass` (kg) 0.142	'optimizacija grede\Finit Element Model.1\Maxim Von Mises.3\Maximum \ Mises' (N_m2)	e um 'on															
3	2	20	10	0.283	2.274e+008	Mean effect Element M	of visina	on `oj	ptimizacija	grede	Finite										
4	3	30	10	0.425	1.051e+008	DIGMONO IN	and	max. e	ffect)	1000 03											
5	4	40	10	0.567	6.217e+007	1															
6	5	50	10	0.708	4.584e+007	A 9 0.8	° 0	mean ptimiza	acija grede	\Finite	Element	6 L									
7	6	60	10	0.85	3.821e+007		Mod	lel.1\M	lass.2\Mass	(surro	unded b	У									
8	7	70	10	0.992	4.575e+007			m1	n. and max.	errect	9				-						
9	8	80	10	1.133	3.703e+007	2 f 0,4	4 2 5	- ¹	Mean	effect	of visi	na on `opt	imizaci	ja							
10	9	10	20	0.283	3.289e+008	2 x 0,2	R⊭čî	0,8 -	gree	le\Finit	e Eleme	nt Model.1	(Maximu	n							
12	10	20	20	0.95	5 1910+007		e a se	0,6 -	(sur	rounded	by min	. and max.	effect)							
13	12	40	20	1 133	3 129e+007	2 P	1228	0,4 -			Ma				`ontinin:		mode) Pir	ite Rlener			
14	13	50	20	1.417	4.171e+007	ê :	i Sea	H 0,2 -	2		Mo	del.1\Maxi	mum Von	Mises.3	\Maximum	Von Mi	ses` (st	rrounded 1	y		
15	14	60	20	1.7	2,755e+007			¥ 0-	Von					min. an	d max. et	[fect)					
16	15	70	20	1.983	4.015e+007	0	5 F F 8	5	T T T T T			1									
17	16	80	20	2.267	2.631e+007	0	e e e e e	£		1 2.			Effe	ct of vi	sina on	`optimi	zacija (rede\Fini	te Eleme	ent	
18	17	10	30	0.425	2.332e+008	0	8 E 2 B	4	a the second	len c	2 2 C	м	lodel.1\N	lass.2\M	ass`for if cr	each va	alue of re paral	`širina` (lel)	no inte	raction	
19	18	20	30	0.85	7.386e+007	o			8226	1 월종	6681						ro paraz				
20	19	30	30	1.275	3.474e+007	0			8 9 9 9		8853	s 6		Eff	ect of vi	sina o	n `optim	izacija gr	ede\Fin	ite Elem	ent
21	20	40	30	1.7	2.084e+007	0			E L L L L L	8 ° 1		문법은		Mode	el.1\Maxi	mum Von	n Mises.	Naximum	Von Mise	s' for	ach
22	21	50	30	2.125	1.704e+007	0				1 82	국 한 번 함			vuru		(curves .	iro puru	
23	22	60	30	2.55	1.652e+007	0				- 89	1e1	1225	5								
24	23	70	30	2.975	1.64e+007	0				- 1 i	Mi se	a s S a	1 1 1 1 1		Mean	slope le\Finit	of the e te Eleme	ffect cur nt Model.1	7e of Vi \Mass.2	sina on Mass` (optimizac surrounded
25	24	80	30	3.4	1.81e+007	0				2	골목	1 3 8 8	1 Z a	2			I	in. and m	x. slop	es)	
26	25	10	40	0.567	1.561e+008	0									1		Mear	a slope of	the eff	ect curv	e of `širi:
2/	20	20	40	1.133	5.454e+007	6						555	t 6	6	.8			optimiz	acija g	rede\Fin	ite Element
20	27	40	40	2.267	1 5540+007	6						563	1 2 문	1 2 0	,6		Model	1\Mass.2\	Mass' (s		d by min.
20	20	50	40	2.207	2 2940+007	6						~ •		18.	4		.	Mea	n slope	of the	effect cury
31	30	60	40	3.4	1.392e+007	ŏ							- bege		2		<u>,</u>	V151		Mean s	lope of the
32	31	70	40	3,966	2.564e+007	6							5 6 ×	۰ ۲	0	8 0	.6	Mises		`širina`	on `optimi
33	32	80	40	4.533	1.346e+007	0							- «	-		e o	4			Mises.3\	Maximum Von
34	33	10	50	0.708	1.399e+008	0									Range	, ¹ 0,	,2	. ¹ ⊤	-	b	y min. and
35	34	20	50	1.417	4.398e+007	0									marge		o —	8 05 -		1	
36	35	30	50	2.125	2.071e+007	0						1.4						d	<u>e</u>		
Read	ty sn	eeu / tal /																F	3 (C) (U) :	100%	U

Slika 29. Rezultati DOE u Micorsoft Excel tablici

Na slici (Slika 30) vidimo kako oba ulazna parametra utječu na naprezanje (Maximum Von Mises).

Slika 30. Utjecaj ulaznih parametara na naprezanje

Nakon što je završena analiza u "Design of Experiments" klikom na ikonu "Optimization" u prozoru će se definirati uvjeti optimizacije (Slika 31).

ptimization				? ×
Problem Constraints	Computati	ions result	5	
Optimization type: Minimi	, zation		•	Ţ
- Optimized parameter	200011			
Finite Flement Medel 1\N	Ince 2\ N 0.85	ka		Select Gal
	1855.2 (10 0,05	wy .		<u>Berettin</u>
Target value: Minimum				<u> </u>
Free Parameters				
Name	Value	Inf. Range	e Sup. Range	Step
`optimirana greda\visina`	30mm	10mm	80mm	Auto.
optimirana greda\sirina	∠vmm	TOWW	oumm	Auto.
Edit list				Edit ranges and step
Available algorithms				
Algorithm type : Simulated	d Annealing A	Algorithm		-
Selected algorithm setting	gs			
-Running Criteria				
Convergence speed :	Fast			-
Termination criteria				
Maximum number of upd	ates		200	
Concocutive undates u	ith out improv	vermente	50	_
Consecutive updates w		vements	50	_
Maximum time (minut	es)		2	
Optimization data				
Save optimization data				
the second s	and a second second			
Run Behavior				
Run Behavior	te O Withou	ut visualiza	ation undate	
Run Behavior With visualization updat	te O Witho	ut visualiza	ation update	
Run Behavior With visualization updat Disconnect Undo log	te O Witho	ut visualiza	ation update	
Run Behavior With visualization updat Disconnect Undo log	te 〇 Witho	ut visualiza	ation update	
Run Behavior With visualization updat Disconnect Undo log	te O Witho	ut visualiza	ation update	
Run Behavior With visualization updat Disconnect Undo log Run optimization	te O Witho	ut visualiza	ation update	

Slika 31. Uvjeti optimizacije grede

Cilj je pronaći najmanju moguću masu uz zadana ograničenja. Parametri čijom promjenom dimenzija će se to ostvariti su: visina i širina. Njihov raspon je jednak kao i u analizi "Design of Experiments", ali ovoga puta je podjela raspona ostavljena da bude automatska.

Pod ograničenja je stavljeno da masa bude manja od 0.5kg uz odstupanje 0.01kg, te da Maximum Von Mises bude manji ili jednak 100MPa (100e+006N_m2) uz odstupanje od 1e+006N_m2.

Greda koja je konstruirana zadovoljava jedan od dva uvjeta, a to je da je naprezanje manje od 100MPa.

Klikom na "Run optimization" u prozoru koji se pojavio će se odrediti ime i mjesto gdje će se spremiti rezultati optimizacije u obliku Microsoft Excel tablice.

Nakon što je proces optimiranja završen, izabrano je najbolje rješenje i primjenjeno na gredu (Slika 32).

Slika 32. Izgled optimirane grede

3.2 Optimiranje boce

U ovom primjeru će se pokazati da je moguće optimirati bez analize konačnih elemenata. Usporediti će se rezultati dviju optimizacija koje se međusobno razlikuju u odabiru algoritma po kojem će se vršiti proračun. Jedan radi po principu globalnog pretraživanja podataka, a drugi lokalnog.

U "Part Design" je modelirana boca i napravljeni su parametri za dimenzije koje će se koristiti prilikom optimiranja. Za materijal boce je izabrano staklo (Smoked glass).
Uz pomoć ikone "Measure Intertia" izmjereni su masa i volumen boce (Slika 33).

Slika 33. Izgled i parametri boce

Parametri za optimiranje u oba slučaja su jednaki.

Na kartici za optimiranje su: pod Optimization type izabran Target Value,

pod Optimized parameter: InertiaVolume.2\Mass,

pod Target value 0,2kg,

pod Free Parameters: radius_dna čija je vrijednost 25mm; da bude u granici od 23-27mm;

radius_tijela čija je vrijednost 30mm, da bude između 28-32mm;

radijus_dna_vrata čija je vrijednost 20mm, da bude između 18-22mm;

te PartBody/Shell.1\InsideThickness čija je vrijednost 4mm, da bude između 2-5mm.

pod vrijeme je zadano 5 min

Razlika je jedino što je u jednom izabran "Simulated Annealing Algorithm" i pod convergence speed "fast" (to je ono što prvo ponudi kod odabira tog algoritma), a u drugome "Gradient Algorithm Without Constrain" i pod convergence speed "slow" (jer je to automatski izabrao prilikom odabira tog algoritma).

Svaka od optimizacija je spremljena u zasebnu excel datoteku.

Usporedbom rezultata i načina na koji svaki od algoritama vodi tijek proračuna optimizacije vidi se kako "Gradient Algorithm Without Constrain" ima finu razradu proračuna, u smislu da su brojčane razlike parametara kojima optimiramo između dvaju rješenja u tablici jako male. U proračunu od cijelog zadanog raspona (najveće i najmanje dimenzije) parametra čije vrijednosti se optimiraju, algoritam koristi isključivo one koje teže minimumima unutar zadanih parametra (Slika 34).

	1 - 19 - 12 - Q) =			boca gaw	c [Compatibility Mode] - Microsoft Excel	
	Home Insert	Page Layout Formulas Data	Review View				-	
	∦ Cut	Calibri • 11 • A A	· = = »··	Wrap Text	Text -		Normal	Bad
Paste	e 🚅 Copy	B I U - □ - ③ - A - ■		💀 Merge & Center 🔻	· · · · · · · · · · · · · · · · · · ·	Conditional Format	Calculation	Check Cell
Ψ.	Clipboard	East D	Alianma	nt D	Number 5	Formatting * as Table *		Styles
	A1 -	fe _`Nh Eval`	Angrinie	in a	Number (*			Styles
	AI V	J× ND Eval	2	-	-			
1	A B	C	D radius daa (mm)	E radius tijola (mm)	F	hose) Dart Dady (S	G holl 1\IncidoThi	ska oss (mm)
2 0		0. 270827102	radius_dria (mm)	radius_tijela (mm)	Taulus_una_vrata (mm) boca (Partbody (S	ien.1/insiderini	ckness (mm)
2 1	0.270837103	0.270827102	25	20	20	4		
1 2	0.270837103	0.270837105	25 00125	20	20	4		
5 2	0.270837103	0.270837341	25.00125	20 0012	20	4		
6 4	0.270837103	0.270847783	25	20	20 0012	4		
7 5	0.270837103	0.270900918	25	30	20.0012	4 00104		
0 6	0.207454027	0.207454027	24 004220100	20 967255975	10 071/07995	2 000262225		
9 7	0.207454027	0.28316657	25.00113216	30 026528825	20.005700423	4 198147533		
10 8	0.207454027	7 0 247622909	24 997997417	29 950722182	19 989/12501	3 632011724		
11 9	0 207454027	7 0 211154029	24.994662673	29.87493554	19 973126578	3.065875916		
12 10	0 207454027	7 0 230380099	24.996357063	29 914638543	19 981657823	3 362423244		
13 11	0.207454027	7 0.212912601	24.994816708	29.878544904	19.973902146	3.092834764		
14 13	2 0.207454027	7 0.22208904	24,995623561	29.897451096	19.977964644	3,234047777		
15 13	3 0 207454027	7 0 21374926	24.994890059	29 880263648	19 974271464	3 10567231		
16 14	1 0.207454027	0.218123795	24.995274274	29.889266597	19.976205987	3.172916603		
17 1	5 0.207454027	7 0.214147498	24,994924987	29.881082098	19.97444733	3.111785428		
18 16	5 0.207454027	7 0.210160144	24,994575701	29.872897599	19,972688673	3.050654253		
19 1	7 0.207454027	7 0.212250137	24,99475866	29.877184718	19,973609874	3.082675345		
20 18	3 0.207454027	7 0.210350269	24,994592333	29.873287337	19.972772418	3.053565262		
21 19	0.207454027	0.208447893	24,994426006	29.869389957	19.971934963	3.024455178		
22 20	0.207454027	0.209444688	24.99451313	29.871431442	19.97237363	3.039703317		
23 2	0.207454027	0.208538539	24.994433927	29.869575547	19.971974841	3.025841373		
24 2	0.207454027	0.207631821	24.994354723	29.867719651	19.971576053	3.011979428		
25 23	3 0.207454027	0.208106839	24.994396211	29.868691787	19.971784942	3.019240447		
26 24	4 0.207454027	0.207675011	24.994358495	29.867808027	19.971595043	3.012639521		
27 25	5 0.207243053	0.207243053	24.994320779	29.866924268	19.971405144	3.006038595		
28 20	5 0.207243053	0.207469333	24.994340535	29.867387189	19.971504615	3.009496223		
29 2	7 0.207243053	0.207263626	24.994322575	29.866966351	19.971414187	3.006352925		
30 28	0.207057889	0.207057889	24.994304615	29.866545513	19.971323758	3.003209627		
31 29	0.206852123	0.206852123	24.994286655	29.866124675	19.97123333	3.000066329		
32 30	0.206852123	0.206959909	24.994296063	29.866345114	19.971280697	3.001712818		
33 31	0.206852123	0.206861922	24.994287511	29.866144715	19.971237636	3.00021601		
34 32	0.206852123	0.206913249	24.99429199	29.866249686	19.971260192	3.001000052		
35 33	0.206852123	0.206866588	24.994287918	29.866154258	19.971239687	3.000287286		
36 34	4 0.206852123	0.20689103	24.994290051	29.866204244	19.971250428	3.00066064		
37 35	5 0.206852123	0.20686881	24.994288112	29.866158802	19.971240663	3.000321228		
38 30	0.206852123	0.206880449	24.994289128	29.866182605	19.971245778	3.000499015		
39 31	0.206852123	0.206869869	24.994288204	29.866160966	19.971241128	3.00033739		
14 4 1	🛏 Sheet1 🖉	7						

Slika 34. Rezultati za "Gradient Algorithm Without Constrain"

"Simulated Annealing Algorithm" za razliku od "Gradient Algorithm Without Constrain" ostavlja dojam kako prilikom optimizacije, dimenzije mjenja bez ikakve logike. Njihove vrijednosti konstantno variraju i za razliku od "Gradient Algorithm Without Constrain" u obzir uzima veći raspon dimenzija, čak i one veće od nazivnih (vrijednosti koje su bile prije optimizacije) (Slika 35).

) =			here an	Concertain Made	Minner & Freed	-
(23)) •			boca saa	a [Compatibility Mode]	- Microsoft Excel	
	Home Insert	Page Layout Formulas Data	Review View					
Ê	i Cut	Calibri • 11 • A *	= =	🚽 Wrap Text	Text -	3	Normal	Bad
Paste	Second Painter	B Z U =	₣ॖॖॖॾॖॾॖऻढ़ढ़	💀 Merge & Center 👻	30. 00 .00 .00 .00 .00	Conditional Format	Calculation	Check Cell
Ť		Font	Alignme	ent G	Number 9	Formatting * as Table *		Styles
	A1 -	(a) fr (Nh Eval)	, ingrinit	-)				Styles
	AI +		-		-			
A 241	A B		D	E	F	here have been a state	G	(
	DEVal Best (kg)	boca\inertiavoiume.2\iviass (kg)	radius_dna (mm)	radius_tijela (mm)	radius_dna_vrata (mm	boca (PartBody (S	nell.1\inside1nic	kness (mm)
2 0	0.27083710	0.2270837103	23	30	20	4		
3 1	0.2000008	0.2000008	24.970049938	29.79737700	19.897204211	3.951254030		
4 2	0.25550171	0.259501719	24.525555651	29.315704943	10.55191026	3.003003000		
5 5	0.23002317	6 0 227075906	24.87205575	29.560566626	19.35181030	3.767407390		
7 6	0.23707330	0 0.237073500	24.751457155	28.300300030	19.205750715	2 466446174		
× 5	0.22030746	5 0.220307466 5 0.204700696	24.078743301	20	10.074030412	2 204279679		
0 7	0.20470009	6 0 192222112	24.320694265	20	10.521577500	3.204276075		
10 8	0.20470069	6 0 1922722112	24.255501555	28	18 221245224	2		
11 9	0.20470005	1 0 202782461	25 149266692	28 155/16925	18 522221099	2 17195472		
12 10	0 20378346	1 0 219917272	26.063804522	28 373000404	18 946251185	3 412691352		
13 11	0 20378346	1 0 230424278	26 303203289	28 735073687	19 154757028	3 536931784		
14 12	0 20378346	1 0 206414746	25 940247946	28 109977111	18 79130144	3 223126769		
15 13	0 20378346	1 0 192001111	25 76726874	28	18 574371798	3		
16 14	0.20121112	8 0.201211128	25.875560879	28	18.746271262	3,150098022		
17 15	0.20121112	8 0.195027513	25,784998986	28	18.683229011	3.047857775		
18 16	0.19944517	9 0.199445179	25.853905372	28.134321925	18,76148844	3,104297351		
19 17	0.19944517	9 0.205672633	25,950374312	28.32237262	18.87105164	3.183312756		
20 18	0.19944517	9 0.204750631	25.698065726	28.249866124	18.81294629	3.175578545		
21 19	0.19944517	9 0.196145784	25.70991197	28	18.714969827	3.064911467		
22 20	0.19944517	9 0.195619399	25.754909029	28	18.425202395	3.063249765		
23 21	0.19944517	9 0.196296473	25.456839349	28.077817432	18.431198639	3.062149123		
24 22	0.19944517	9 0.197262982	25.039541798	28.186761837	18.439593382	3.060608224		
25 23	0.19944517	9 0.198650499	24.455325226	28.339284003	18.451346022	3.058450965		
26 24	0.19984280	4 0.199842804	23.637422025	28.552815036	18.467799717	3.055430802		
27 25	0.19984280	4 0.201314653	23	28.851758482	18.490834891	3.051202574		
28 26	0.19984280	4 0.207981528	23	28.435037135	18.798525232	3.196979764		
29 27	0.19984280	4 0.201981752	23	29.024328683	18.494525845	3.044715308		
30 28	0.19984280	4 0.204218556	23.096050128	28.989773956	18.623337912	3.081076843		
31 29	0.19984280	4 0.198773502	23.128512525	28.942474416	18.508395507	3		
32 30	0.19984280	4 0.198151401	23.30843006	28.827878443	18.527813035	3		
33 31	0.19984280	4 0.199240233	23	29.019373271	18.537262034	3		
34 32	0.19994557	9 0.199945579	23	29.127031667	18.577675172	3		
35 33	0.19994557	9 0.200932327	23	29.277753422	18.634253564	3		
36 34	0.19994557	9 0.207992018	23.036155772	29.276123878	18.751750645	3.110565176		
37 35	0.19994557	9 0.205024599	23.029613216	29.419126409	18.780460201	3.048282679		
38 36	0.19994557	9 0.200457192	23	29.215643474	18.559375853	3		
39 37	0.19994557	9 0.199791766	23	29.128689547	18.454547057	3		
н÷н	🕅 Sheet1 🤇 🖏	7	-		·			
Ready								

Slika 35. Rezultati za "Simulated Annealing Algorithm"

Oba algoritma su došla do nekog konačnog rješenja. Rješenja se međusobno razlikuju, a ta razlika u konačnim dimenzijama može se vidjeti na slici (Slika 36).

Na slici lijevo vidi se najbolje rješenje dobiveno proračunom s algoritmom "Gradient Algorithm Without Constrain", a na slici desno dobiveno sa "Simulated Annealing Algorithm".

Slika 36. Usporedba konačnih rezultata optimiranja za oba algoritma

3.3 Optimiranje nosača

U ovom primjeru osim što se optimiranjem želi postići najmanja masa koja će izdržati zadano opterećenje, također se želi vidjeti kakav utjecaj brzina optimiranja ima na konačne rezultate.

U "Part Design" je modeliran nosač, a dimenzije koje su izabrane za parametre s kojima će se optimirati vide se na slici (Slika 37).

Parametre su nazvani "sirina rebara" i "udaljenost rebara".

Za materijal nosača izabran je aluminij (Aluminium).

Slika 37. Prikaz dimenzija koje će se optimirati

U "Generative Structural Analysis" za konačne elemente izabrani su parabolični tetraedri čiji parametri (veličina i gustoća) mesha su 5mm i 2mm.

Tetraedar je osnovni konačni element koji se koristi u analizi 3D modela, a parabolični tetraedri daju preciznije rezultate od linijskih [6].

Nosač je na jednom kraju uklješten, a na drugom opterećen silom od 800 N. U drvetu pod "Sensors" osim "Energy" izabrani su "Maximum von Mises" i "Mass" (Slika 38).

Slika 38. FEM analiza nosača

Sveukupno su napravljene četiri optimizacije. Uvjeti i parametri po kojima su optimirani su jednaki, jedina razlika je u brzini optimiranja (fast, medium, slow ili infinite).

Na kartici Problem:

-Optimization type: minimization	
-Optimized parameter: mass	

-Free parameters: sirina_rebara od 2 do 13mm

udaljenost_rebara od 2 do 13mm

-Algorithm type: Simulated Anealling Algorithm

-Termination criteria: maximum number of updates: 100

-Consecutive updates without improvements: 20

-Maximum time: 15min

Na kartici Constraints

- Maximum Von Misses< 9.2e7N_m2

Svako od rješenja je spremljeno u zasebnu excel datoteku.

Sva optimiranja su uspješno obavljena i konačni rezultati su im unutar zadanih ograničenja.

Na slikama se vide usporedbe najboljih konačnih rješenja dobivenih različitim brzinama optimiranja.

Na slikama (Slika 39 i Slika 40) vidimo rezultate dobivene optimiranjem s "fast" brzinom. Ukupni broj rješenja je 100.

Slika 39. Izgled nosača i rezultati dobiveni "fast" brzinom

Slika 40. Prikaz krivulja dobivenih "fast" brzinom

Na slikama (Slika 41 i Slika 42) su prikazani najbolji konačni rezultati dobiveni optimiranjem s "medium" brzinom. Ukupni broj rješenja je 83.

Slika 41. Izgled nosača i rezultati dobiveni "medium" brzinom

Slika 42. Prikaz krivulja dobivenih "medium" brzinom

Na slikama (Slika 43 i Slika 44) se vide najbolja rješenja dobivena optimiranjem sa "slow" brzinom. Ukupni broj rješenja je 80.

Slika 43. Izgled nosača i rezultati dobiveni "slow" brzinom

Slika 44. Prikaz krivulja dobivenih "slow" brzinom

I na slikama (Slika 45 i Slika 46) se vidi najbolje konačno rješenje dobiveno optimiranjem s "infinite" brzinom. Ukupni broj rješenja je 98.

Slika 45. Izgled nosača i rezultati dobiveni "infinite" brzinom

Slika 46. Prikaz krivulja dobivenih "infinite" brzinom

Usporedbom svih rezultata vidi se kako su rješenja i dijagrami dobiveni optimiranjem brzinama "fast", "medium" i "slow" jako slični. Dok je rješenje dobiveno s "infinite" drugačije, te da se rezultati dobiveni na taj način dosta razlikuju od ostalih.

Razlog tome je što se brzina "infinite" koristi za slučajeve kada problem nema lokalnih optimuma. Dok za slučajeve s mnogo lokalnih optimuma koristi se najmanja brzina.

3.4 Optimiranje I-grede

U ovom primjeru optimiranjem htjela se postići maksimalna moguća vrijednost momenta tromosti I-grede za zadane uvjete. Za razliku od prošlih primjera di su uvjeti za optimiranje većinom bili izdefinirani na kartici "Problem" uz par ograničenja, u ovom primjeru veliku ulogu će imati uvjeti i ograničenja koje će se postaviti na kartici "Constraints".

U "Part Design" nacrtana je I-greda čije dimenzije su: širina=150mm, visina=200mm, prirubnica=20mm i okvir=20mm. Ukupna duljina grede je 1000mm.

Za parametre su izabrani volumen (smartvolume) i moment tromosti (inertia).

Formula za moment tromosti I-grede je:

((sirina*visina*visina)/12)-(((sirina-okvir)*(visina-(2*prirubnica))*(visina-(2*prirubnica)))/12) (Slika 47)

Slika 47. Prikaz izgleda i parametara I-grede

U prozoru Optimization na kartici Problem:

Optimization type: Maximization

Optimized parameter:: Inertia

Free parameters: Visina

Sirina

Prirubnica

Okvir

(za free parameters nije zadan raspon "od-do", nego je na automatski)

Algorithm type: Simulated Annealing Algorithm

Convergence speed: Fast

Na kartici Constraints:

smartvolume==0.01m3

Sirina-okvir>0mm

Visina-2*okvir>0mm

Sirina>0mm

Okvir>0mm

Visina>0mm

Okvir-prirubnica==0mm

Ovim uvjetima kao prvo želi se postići točno ciljani volumen,. Kako nije zadan raspon dimenzija za pojedini parametar, ostalim formulama je definirano da su vrijednosti veće od nule i da I-greda nakon optimiranja ne izgubi taj svoj I-oblik.

Rezultati optimiranja su spremljeni u excel datoteku (Slika 48).

) 🖬 🤊	• (° • 🙆)	÷	-					I-greda [Cor	npatibility	Mode]	Microsoft Excel					. A.,		-		- 0 - ×
E	Home	Insert	Page Layout F	ormulas Data	Review	View															0 - =
	X Cut									-	III AII		1					-		Σ AutoSum *	A
	i i co	w C	alibri • 11	• A A =		Wrap Text	Text			<u>s</u>		Normal	Bad	Good	a	Neutral			· 🐨 💵	EII *	Zr ura
Pa	ste 🍼 For	mat Painter	B I U - 🖽 -	• 💁 • 🛕 • 🔳		評 課 🔤 Merge & C	enter 🐐 🕎	- % ,	.0 .00 Cond	litional F	ormat Table v	Calculation	Check Cell	Explo	anatory	Input	e	Insert	t Delete Format	Clear *	Sort & Find &
	Clipboar	d G	Font	G.		Alignment	Gi	Number	G.	atting us			Styles						Cells	Edi	ting
	A126	- (9	fx 124																		
	۵	B	C	D		F	F		6			н							1	м	N
		0	0	`Lareda \ Relation	s) 'Lar	rada \ Relations\	'Lareda \ Rei	lations)	`Lareda \ Rel	ations	`L-gro	da \ Relations\	Lareda \Relatio	nc)	`Loroda \ P	elations\			-		
				Ontimizations 1\0	Onti Onti	timizations 1\Onti	Ontimizatio	ns.1\Onti	Ontimization	s.1\Onti	Ontin	nizations 1\Onti	Ontimizations 1	Onti	Ontimizati	ons 1\Onti					
				mization.1\Proble	em.1 miza	ration.1\Problem.1	mization.1\	Problem.1	mization.1\P	roblem.1	mizat	ion.1\Problem.1	mization.1\Prob	em.1	mization.1	Problem.1					
				1	\ \		\		\		1		\		\						
			`I-greda	Constraint.1\Dist	ance Con	straint.2\Distance	Constraint.3	\Distance	Constraint.4	Distance	Const	raint.5\Distance	Constraint.6\Dist	ance	Constraint	7\Distance					
1	'Nb Eval'	Best (m4)	\Inertia.1` (m4)	ToSatisfaction` (m	n3) ToSi	atisfaction` (mm)	ToSatisfactio	on`(mm)	ToSatisfactio	n` (mm)	ToSat	isfaction` (mm)	ToSatisfaction` (r	nm)	ToSatisfact	ion` (mm)	prirubnie	a (mm) okvir (mm)	sirina (mm)	visina (mm)
2	Ó	0.000055627	0.000055627	0.0008	0		Ó		0		0		0		0		20		20	150	200
3	1	0.000055627	0.000050697	0.001246166	0		Ó		Ó		0		0		0.86636438	8	19.85324	969	18.986885301	146.145157913	195.125403577
4	2	0.000060672	0.000060672	0.000380999	0		0		0		0		0		0.58264645	2	20.76457	0137	20.181923684	152.65205619	204.025643432
5	3	0.000060672	0.000068285	0.000220754	0		0		0		0		0		1.39835148	6	21.83496	8328	20.436616843	156.364934856	209.661544238
6	4	0.000065418	0.000065418	0.000272392	0		0		0		0		0		0.12591037	9	20.94522	0444	20.819310065	164.657919191	203.989896561
7	5	0.000065418	0.000072146	0.001200863	0		0		0		0		0		0.51352012	5	21.19813	0873	21.711650998	181.466127391	203.93985094
8	6	0.000065418	0.000068102	0.000377126	0		0		0		0		0		0.71672813		20.55188	4768	21.268612898	166.40693456	207.413310958
9	7	0.000065418	0.000075018	0.000559072	0		0		0		0		0		0.71672813		20.55188	4768	21.268612898	166.40693456	215.968020298
10	8	0.000065418	0.000067475	0.000360128	0		0		0		0		0		0.71672813		20.55188	4768	21.268612898	166.40693456	206.614116923
11	9	0.000065418	0.000078402	0.000644607	0		0		0		0		0		0.71672813		20.55188	4768	21.268612898	166.40693456	219.989674692
12	10	0.000065418	0.000078246	0.00064072	0		0		0		0		6		0.71672813		20.55188	4768	21.208012898	100.40093450	219.806896076
13	11	0.000065418	0.000078029	0.000635277	0		6	-	6		0		6		0.71672813		20.55188	4768	21.208012898	166.40693456	219.551006014
15	12	0.000065418	0.000077725	0.000616991	6		0		6		6		6		0.71672813		20.55188	4769	21.269612898	166 40692456	219.691215406
16	14	0.000065418	0.000076708	0.000602057	6		6		6		6		6		0 71672813		20.55188	4768	21.268612898	166 40693456	217 989053076
17	15	0.000065418	0.000075883	0.000581149	6		0		6		6		ň		0 71672813		20.55188	4768	21 268612898	166 40693456	217.006025813
18	16	0.000065418	0.000038769	0.003706134	6		0		0		0		6		5.72062894	8	22.71931	7117	16,998688169	74,844667881	215.629787646
19	17	0.000065418	0.000080802	0.000693143	0		0		0		6		6		6.50049984	9	17.37224	6461	23.87274631	176.289867072	226.094109295
20	18	0.000088959	0.000088959	0.00020307	0		0		0		0		6		0.04091533	9	18.33831	1644	18.379226984	178.907071143	234.800448268
21	19	0.000088959	0.000103024	0.000711622	0		0		0		0		0		0.27447134	4	14.68863	9325	14.963110669	198.855883875	259.712639704
22	20	0.000088959	0.000098124	0.000118108	0		Ó		0		0		0		3.54800669	8	14.68863	9325	18.236646023	198.855883875	250.911846128
23	21	0.000088959	0.000083455	0.000500345	0		0		0		0		0		3.14828815	5	14.68863	9325	17.836927481	198.855883875	234.44679234
24	22	0.000088959	0.000073786	0.000555703	0		Ó		0		0		0		4.04392304	4	14.68863	9325	18.732562369	198.855883875	221.686935297
25	23	0.000088959	0.000094112	0.000172019	0		0		0		0		0		3.68393216		14.68863	9325	18.372571485	198.855883875	246.338560956
26	24	0.000088959	0.00008947	0.000141334	0		0		0		0		0		4.34016926	9	14.68863	9325	19.028808594	198.855883875	240.468846069
27	25	0.000088959	0.000073649	0.000672863	0		0		0		0		0		3.40520442	1	14.68863	9325	18.093843746	198.855883875	222.00037441
28	26	0.000088959	0.000082214	0.000375113	0		0		0		0		0		3.95798553		14.68863	9325	18.646624855	198.855883875	232.258060363
29	27	0.000088959	0.000088268	0.000095965	0		0		0		0		0		4.71265116	6	14.68863	9325	19.401290491	198.855883875	238.754627986
30	28	0.000088959	0.000091418	0.000114036	0		0		0		0		0		4.26374241	4	14.68863	9325	18.952381739	198.855883875	242.76044141
31	29	0.000084124	0.000084124	0.000116778	0		0		0		0		0		0.31129121	4	18.52317	9776	18.83447099	174.84246712	230.282529922
32	30	0.000077566	0.000077566	0.000016557	0		0		0		0		0		0.68981743	9	18.78199	516	19.471812599	169.152021489	223.957444237
33	31	0.000077566	0.0000/1753	0.000077256	0		0		0		0		0		1.21975415	3	19.14433	6699	20.364090852	169.152021489	215.102324278
34	32	0.000077566	0.000077702	0.00006/183	0		0		0		0		0		1./4669321	5	18.52996	0746	20.276653961	169.152021489	224.389762571
Par	- PIL SN	cell / U												-			11	-	(m)	TI III 100% (

Slika 48. Rezultati optimizacije I-grede u Micorsoft Excel tablici

Problem koji se javlja kod optimiranja u Simulated Annealing Algorithm-u je taj da svi uvjeti zadani sa znakom "==" (točna vrijednost) nikada neće biti zadovoljeni zbog načina na koji taj algoritam funkcionira (analizira), ali razlika da se dobije "točan rezultat" je minimalna,tj. skoro pa jednaka nuli.

To se najbolje može vidjeti na slici (Slika 49) na kojoj su pod najboljim rezultatom označene dvije veličine one koje su trebale biti "točna" vrijednost.

imizatio	on													8
Probler	m Constrair	nts Computations re	sults											
Constr	aints priorities	used to sort the results												
-	inter priorities			-			- 1							
Constr	aint.1 Constr	aint.2 Constraint.3 C	onstraint.4 Constraint.5	Constra	aint.6 Co	onstraint	.7							
1	1	1 1	1	1	1									
Adjust	t priorities from	n weights										Reset priori	ties to 1	
Setting	gs of the results	sort												
Histo	oric cort: displa	vs the results in the com	unutation order											
	ine sore displa	ys the results in the com	patation oraci											
) Lexic	ographic sort:	displays the results from	the best to the worst											
lesults t	to display: All													-
Sorted	reculte													
Sorred	results		1						1					
`Nb	Best (m4)	'I-greda\Inertia.1` (m4)] 'I-greda\Relations\O	1-gr	'I-gre	'I-gr	'I-gr	'I-gr	I-greda\Rela	prirubnica (mm)	okvir (mm)	sirina (mm)	visina (mm)	·
179	0,000085969	0,000085783	0,000011865	0	0	0	0	0	0,000702785	19,195171068	19,195873853	161,006822178	236,715653228	
180	0,000085969	0,000086012	0,000006761	0	0	0	0	0	0,000702785	19,195171068	19,195873853	161,006822178	236,981540647	
181	0,000085969	0,000085864	0,000010062	0	0	0	0	0	0,000702785	19,195171068	19,195873853	161,006822178	236,809596908	
.82	0,000085969	0,000085886	0,000009571	0	0	0	0	0	0,000702785	19,195171068	19,195873853	161,006822178	236,83519074	
83	0,000085969	0,00008587	0,000009925	0	0	0	0	0	0,000702785	19,195171068	19,195873853	161,006822178	236,816745078	
.84	0,000085969	0,000085883	0,000009637	0	0	0	0	0	0,000702785	19,195171068	19,195873853	161,006822178	236,831731966	
.85	0,000085969	0,000085883	0,000009646	0	0	0	0	0	0,000/02/85	19,1951/1068	19,1958/3853	161,006822178	236,831294526	
.86	0,000085969	0,000085969	5,440593932e-007	0	0	0	0	0	0,002845688	19,207866692	19,205021004	161,10226257	236,832302342	
.8/	0,000085969	0,000085969	5,352694635e-007	0	0	0	0	0	0,002845688	19,207866692	19,205021004	161,10226257	236,832760031	
199	0,00008597	0,00008597	5,163940536e-007	0	0	0	0	0	0,002997912	19,207895713	19,2048978	161,102855534	236,833400796	
100	0,000085971	0,000085971	4,8990800536-007	0	0	0	0	0	0,003211026	19,207930342	19,204725310	101,103085084	230,834297800	
90	0,000085973	0,000085973	4,529/52258e-007	0	0	0	0	0	0,003009380	19,207993223	19,204483838	161,104847895	230,8333333703	
91	0,000085975	0,000085975	4,0110017228-007	0	0	0	0	0	0,005927066	19,200072050	19,204145708	161,106474969	230,057512024	
102	0,000085975	0,000063977	4,470215210E-007	0	0	0	0	0	0,004400565	19,200072030	19,205072471	161,100474969	230,039775300	
104	0,000083973	0,000085975	2 21 27 22 26 27 - 007	0	0	0	0	0	0,005550754	19,200072030	19,204010120	161,106474969	230,037109702	
05	0,000085975	0,000085975	2,313732037E-007	0	0	0	0	0	0,003030237	19,200072050	19,205054019	161,106474989	236,836570432	
06	0,000085975	0,000085975	1,01///65156e-007	0	0	0	0	0	0,002312342	19,200072050	19,205700514	161,106474909	236,836300972	
07	0.000085976	0.000085976	3 73247605e-007	0	0	0	ő	ő	0,000126664	19,208072856	10 20810052	161 106474989	236 83575423	
98	0.000085976	0 000085977	1 783499007e-007	õ	õ	õ	ŏ	õ	0.000976479	19 208072856	19 207096377	161 106474989	236 837003121	
99	0 000085976	0 00008598	2 359447782e-007	0	0	0	0	0	0.001130012	19 208072856	19 206942844	161 106474989	236 841 587868	
200	0.000085974	0.000085974	3.170774925e-008	0	0	0	Ó	0	0.001515124	19,208072856	19,206557733	161,106474989	236,834932794	
200	0,000085974	0,000050697	0 001246166	0	0	0	0	0	0,866364388	19,85324969	18,986885301	146,145157913	195,125403577	
201	0,000085974	0,000085974	3,170774925e-008	0	0	0	0	0	0,001515124	19,208072856	19,206557733	161,106474989	236,834932794	
						Apply	y values t	o param	neters					
Curves	5													
Select	parameters												She	w curves.
													0110	
un onti	imization													
opu	201011													
												OK	Apply	📮 Can

Slika 49. Prikaz odstupanja rezultata od traženih zahtjevima

Konačan izgled grede i njene dimenzije vide se na slici (Slika 50).

Slika 50. Konačan izgled i rezultati optimirane I-grede

3.5 Optimiranje viličastog nosača

U ovom primjeru htjela se optimiranjem smanjiti masa viličastog nosača za barem 15%. Uz to željelo se smanjiti i naprezanje (Maximum Von Misses). Htjelo se vidjeti koliki utjecaj na rezultate imaju vrijednosti brojeva koje se zadaju u "constraints" pod "weight".

Sveukupno su napravljene tri optimizacije koje su po svemu bile identične osim po brojevima u weight (tim brojem pridodalo se na važnosti pojedinog ograničenja, tj što je veći broj to je ograničenje značajnije za ispoštovat).

U "Part Designu" je modeliran viličasti nosač, definirani su parametri i izmjerena je masa (Slika 51).

Za parametre su izabrane dimenzije koje neće utjecati na oblik nosača. Nazvane su "dubina utora", "veliki r" i "mali r". Na što se točno ti parametri odnose vidi se na slikama (Slika 52 i Slika 53) To su dimenzije koje uz svoju brojčanu vrijednost imaju f(x).

Za materijal viličastog nosača izabran je aluminij (Aluminium).

U "Generative Structural Analysis" za konačne elemente izabrani su parabolični tetraedri čiji parametri (veličina i gustoća) mesha su 2mm i 1mm.

Viličasti nosač je na jednom kraju uklješten, a na drugom mu je definiran pomak (Enforced Displacement) od 0.254mm. U drvetu pod "Sensors" izabrani su "Maximum von Mises". Rezultati analize konačnih elemenata mogu se vidjeti na slici (Slika 54).

Slika 54. FEM analiza viličastog nosača

Idući korak je optimizacija nosača. Napravljene su tri optimizacije koje su jednake u svim segmentima osim u odabiru "težina" (weight).

Uvjeti koji su identični u sva tri slučaja su:

Na kartici Problem: Optimization type: minimization

Optimized parameter: Mass

Free parameters: dubina_utora

			veliki	r	
			mali r		
(za free parameters nije d	lefiniran raspo	n, ostavljen je na at	utomate	ski)	
		Algorithm type:	Simul Algori	ated thm	Annealing
		Convergence spee	d:	Fast	
		Terminating criteria	a: 100,	20, 30	
Na kartici Constraints:	Maximum Vo	on Misses<1.4e+008	3N_m2		
	Mass<=0.13	6kg			
	Dubina_utor	a<11mm			
(htjelo se da nosač zadrži	svoj "izvoran'	" izgled jer već s 12r	nm je ,	,šupalj")	
	Veliki r<=19r	nm			
	Mali r<=9.5m	nm (tim dimenzijama	a rupe (ostaju un	utar utora)
	Veliki r- mali	r>0mm			

U prvoj optimizaciji (optimization.1) vrijednosti za weight: su:

Maximum Von Misses - 5

Mass - 5

Dubina_utora - 1

Veliki r - 1

Mali r - 1

Veliki r-mali r – 1

Rezultati prve optimizacije vide se na slici (Slika 55).

Slika 55. Izgled i rezultati prve optimizacije viličastog nosača

Ako se malo bolje pogledaju rezultati, vidi se kako svi traženi uvjeti nisu ispunjeni (Slika 56).

timization											?	- 2
Problem	Constraints	Computation	ns results									
Constraint	ts priorities us	ed to sort the res	ults									
Constraint	1. Cometration				:-+ 6							
Constraint	t.1 Constrain	t.2 Constraint.:	Constraint.4 Cons	traint.5 Constra	int.o							
1	1	1	1 1	1								
									-			
Adjust pri	iorities from w	reights							ĸ	eset priorities to	1	
Settings o	f the results so	ort										
Historic	sort: displays	the results in the	computation order									
Lexicogr	raphic sort: dis	plays the results	from the best to the w	orst								
esults to d	lisplay: All											-
Sorted res	ulte											
Softed res	uits .	1	1	[[[
Nb Eval`	Best (kg)	Vilicasti nos	Analysis Manage	Analysis Ma	Analysis Ma	Analys	Analysis Man	Anal	dubina utora` (mm) veliki r` (mm)	mali r` (mm)	_^
/	0,13043235	0,13043235	U	0	0,29961437	0	1,291/59125	0	11,29961437	20,291759125	5,051688806	
8	0,135518901	0,135518901	0	0	0	0	1,122241916	0	10,394942929	20,122241916	5,035802839	
9	0,135518901	0,142940518	0	0,006940518	0	0	0,884917824	0	9,128402911	19,884917824	5,013562485	
5	0,135518901	0,136860932	0	0,000860932	0	0	0,788321418	0	10,23453117	19,788321418	5,069271208	
	0,135518901	0,137759439	0	0,001/59439	0	0	1,068581664	0	10,009518908	20,068581664	4,881393973	
-	0,135518901	0,130/13952	5,943504e+006	0,000/13952	0	0	0,780338758	0	10,273487020	19,780338758	4,820343308	
5	0,135518901	0,134035412	0	0	0	0	2,40225881	0	10,179152667	21,40225881	4,05289854	
1	0,135518901	0,120993757	4,1/84448e+00/	0	0	0	4,209400810	0	10,41003993	23,209400810	4,333004934	
-	0,135518901	0,130623046	0	0	0	0	3,028212773	0	10,551039333	22,028212773	4,72338405	- 1
) 7	0,135518901	0,128857979	0,21021888e+008	0	0	0	3,585570900	0	10,713944073	22,583570900	4,802217030	
2	0,135518901	0,128790885	6 604624 - 007	0	0 2501 26206	0	3,512979021	0	10,048433403	22,5129/9021	4,515915222	
))	0,155518901	0,125001479	0,0940240+007	0 002692242	0,550120290	0	4,22914/109	0	0.9207/1271	25,229147169	4,427230020 5,006632796	
,	0,135518901	0,150005542	0	0,002065542	0	0	1,079515079	0	9,029741571	20,079515079	5,000025780	
) 1	0,135518901	0,139032935	0	0,003632935	0	0	1,459504005	0	9,406270691	20,439304003	5,000032447	
2	0,135518901	0,137905580	0	0,001905580	0	0	1,120490701	0	9,95020404	20,128498701	5,004087011	
2	0.135518901	0135337389	0	0	0	õ	1 293760634	ő	10 381 382824	20,293760634	4 995566063	- 1
4	0.135518901	0133289204	0	0	0	ő	1 428724498	ő	10,728562675	20,2337000034	4 9886068	
5	0 135518901	0 130482065	0	0	0 214614466	ő	1 617673907	ő	11 214614466	20,617673907	4 97886383	
5	0 135518901	0 1 281 44 354	0	0	0 775430677	ő	0 789930419	ő	11 775430677	19 789930419	5 165893599	
,	0.135518901	0.12794766	0	0	0.820137721	0	0.531213917	0	11.820137721	19.531213917	5.105095054	
B	0.135518901	0.12812276	0	0	0.791534802	0	0.454017292	0	11.791534802	19.454017292	5.159912884	
8	0.135518901	0.158598044	5.352048e+006	0.022598044	0	0	0	0	7.043133998	17.682416783	7.810797102	
9	0,135518901	0,135518901	0	0	0	0	1,122241916	0	10,394942929	20,122241916	5,035802839	
					Apply unless	to norame	tors					
Curves —					Аррууана	s to parama	uero -					
Select para	ameters										Show curv	/es
												_
un optimi:	zation											
										🔾 ок 📔 🖉	Apply	Canc
												_

Slika 56. Tablica s rezultatima prve optimizacije

"Veliki r" je veći od 19mm i samim time ulazi u tijelo nosača što se htjelo izbjeći.

U drugoj optimizaciji (optimization.2) vrijednosti za weight su:

Maximum Von Misses - 5
Mass - 5
Dubina_utora - 3
Veliki r - 3
Mali r - 3
Veliki r-mali r – 1

Rezultati druge optimizacije vide se na slici (Slika 57).

Slika 57. Izgled i rezultati druge optimizacije viličastog nosača

Najbolje ponuđeno rješenje ima ispunjene sve zadane uvjete. To se može vidjeti na slici (Slika 58) gdje rješenje pod brojem 51 u stupcima koji predstavljaju postavljena ograničenja sve vrijednosti su nula. Nule znače da nema odstupanja od traženih rješenja.

Optimization											9	×
Problem	L Constraints	Computations	esults									
								- 1				
Constrain	nts priorities us	ed to sort the result	5	,								
Constrain	nt.7 Constrain	it.8 Constraint.9	Constraint.10 Constra	aint.11 Constrain	t.12							
1	1	1 :	1 1	1								
Adjust priorities from weights Reset priorities to 1												
- Settings of	of the results so	ort										
Historic	c sort: displays	the results in the co	mputation order									
O Lexicographic sort: displays the results from the best to the worst												
Results to display: All												
- Sorted ro	eulte											
Sorted re	Suits						1					
"Nb Eval"	Best (kg)	Vilicasti nosac\	Analysis Manager	Analysis Man	Analysis Ma	Analysis Ma	Anal	An	dubina utora` (mm)	veliki r` (mm)	imali rì (mm)	1
29	0,134810528	0,134810528	0	0	0	U	0	0	10,82899501	18,329113804	4,0/3216396	
30	0,133513782	0,133513782	0	U	0	U	0	0	10,99345066	18,584985169	4,242185686	
31	0,133513782	0,131/96251	100400	0	0,22368857	0	0	0	11,22368857	18,94320508	4,478742692	
32	0,133513782	0,129611618	0	0	0,584502651	0	0	0	11,584502651	18,706206503	4,023940155	
33	0,133513782	0,135423277	0	0	0 144205201	0	0	0	10,79500288	17,782807699	4,200612633	
34	0,133513782	0,132903370	1,310832e+000	0 000220775	0,144286291	0	0	0	11,144280291	17,707808752	4,41144533	
22	0,155515762	0,1566/97/5	0	0,002879775	0	0	0	0	10,542291775	17,577042095	5,96407947	
27	0,155515762	0,155005709	0	0	0 047240744	0	0	0	10,900145057	16 2771 20772	4,103/00304	
29	0,133513782	0,134422410	0	0 000857050	0,047340744	0	0	0	10 701070047	15 010414552	4,103034724	
20	0,133513782	0,130037033	0	0,000857055	0	0	0	0	10,701073047	15,910414555	2 702015285	
40	0 133513782	01/13320037	0	0.007320937	0	0	õ	ő	10,410204001	14 501005821	3 760369684	
41	0 133513782	0 135657052	0	0	0	0 101049405	ő	ő	10 59580409	19 101049405	4 262254805	
42	0 133513782	0 132878563	0	0	0.087579042	0	ő	ő	11 087579042	18 608066827	4 268658062	
43	0 133513782	0 133468645	2 442208e+006	ů.	0	0	õ	õ	10,97502176	18 850457651	4 193005867	
44	0.133513782	0.133833775	773008	0	0	õ	õ	õ	10,955414429	18,471064561	4.275012802	
45	0.133513782	0.132925624	0	0	0.068595473	0	0	0	11.068595473	18,739549237	4,264398312	
46	0.133513782	0,132654778	0	0	0.116119256	0	0	0	11,116119256	18.687699207	4,206861464	=
47	0,133513782	0,134050094	0	0	o	0	0	0	10,915973675	18,545819986	4,239116688	-
48	0,133513782	0,133413631	0	0	0,009852773	0	0	0	11,009852773	18,571667785	4,247351822	
49	0,133513782	0,133541012	0	0	0	0	0	0	10,990197705	18,576736403	4,238149562	
50	0,133513782	0,133760643	0	0	0	0	0	0	10,956604163	18,581587882	4,225216873	
50	0,133513782	0,158598044	5,352048e+006	0,022598044	0	0	0	0	7,043133998	17,682416783	7,810797102	
51	0,133513782	0,133513782	0	0	0	0	0	0	10,99345066	18,584985169	4,242185686	*
				ļ	apply values to pa	rameters						
Curves -												
Select par	rameters										Show curv	es
-												
Run optimization												
OK OF Apply OF Cancel												
100 Mar												

Slika 58. Tablica s rezultatima druge optimizacije

U trećoj optimizaciji (optimization.3) vrijednosti za weight: su:

Maximum Von Misses - 1

Mass - 1

Dubina_utora - 1

Veliki r - 1

Mali r - 1

Veliki r-mali r - 1

Rezultati treće optimizacije vide se na slici (Slika 59).

Slika 59. Izgled i rezultati treće optimizacije viličastog nosača

Najbolje rješenje čiji rezultati se vide na slici (Slika 59) ne zadovoljava sve uvjete jer je Maximum Von Misses veće od 1.4e+008N_m2.

Ali ako se gleda tablica s rješenjima na kartici "Computation results", rezultati koji su primijenjeni na model u stupcima di se nalaze ograničenjima imaju sve nule. Što bi trebalo značiti da su svi uvjeti ispunjeni. U plavom pravokutniku u tablici nalazi se vrijednost odstupanja za uvjet Maximum Von Misses<1.4e+008N_m2 (Slika 60).

Op	otimization											2	X
			-1										
	Problem Constraints Computations results												
	Constraints priorities used to sort the results												
	Constraint	.13 Constrair	nt.14 Constraint.	.15 Constraint.16	Constraint.17	Constraint.18							
	1	1	1	1	1 :	1							
Adjust priorities from weights Reset priorities to 1													
	- Settings of	the results so	rt										
	Historic :	sort: displays t	he results in the c	omputation order									
		anhic sort: disi	plays the results fr	rom the hest to the	worst								
	Devilte to al	aprile sore dis	plays the results h	ioni the best to the	WOISE								
	Results to di	ispiay: All											_
	Sorted resi	ults											
	'Nb Eval'	Best (kg)	"Vilicasti nosa	`Analysis Man	`Analysis Ma	`Analysis Ma	`Analysis	`Ana	`Anal	`dubina utora`	(mm) veliki r` (mm)	`mali r` (mm)	-
	39	0,132922101	0,133023396	0	0	0,067612058	0	0	0	11,067612058	18,509012794	4,584159443	
	40	0,132922101	0,131507787	0	0	0,279422388	0	0	0	11,279422388	18,794060572	4,533815843	
	41	0,132922101	0,132459216	0	0	0,136267784	0	0	0	11,136267784	18,743584405	4,470467952	
	42	0,132922101	0,133510355	0	0	0	1,072974942	0	0	10,795891069	20,072974942	4,451155568	
	43	0,132922101	0,133025075	0	0	0	0,908071564	0	0	10,9075645	19,908071564	4,625583995	
	44	0,132922101	0,132138213	0	0	0,050386134	1,01134053	0	0	11,050386134	20,01134053	4,557299267	
	45	0,132922101	0,131816159	0	0	0,230690222	0	0	0	11,230690222	18,808400003	4,500900974	
	46	0,132922101	0,13076306	0	0	0,337396921	0,645933137	0	0	11,337396921	19,645933137	4,554236925	
	47	0,1341196	0,1341196	0	0	0	0	0	0	10,895324762	18,614922538	4,352762664	
	48	0,1341196	0,135906841	0	0	0	0	0	0	10,689066498	18,12422403	4,15//2/456	
	49	0,1341196	0,1356/4553	0	0	0	0	0	0	10,688032559	18,402235291	4,224684702	
	50	0,1341196	0,136033292	0	0,000033292	0	0	0	0	10,600644342	18,61/21480/	4,399926748	
	51	0,133464771	0,133464771	0	0	0	0	0	0	10,985370692	18,722158771	4,334505474	
	52	0,133464771	0,132307218	1 940552006	0	0,111434993	0	0	0	11,111434993	18,872289490	4,308945408	
	54	0,133404771	0,13290/380	1,849552e+000	0	0,109149712	0	0	0	11,109149712	18,204404782	4,475184008	
	55	0,155404771	0,152104050	0	0	0,100515007	0	0	0	11,100515007	18,079001905	4,240013031	
	56	0,133404771	0,133030935	0	0	0,024600426	0 000281128	0	0	11,024000420	10,993524045	4,20495512	
	57	0,133464771	0,132000095	0	0	0,109107752	0,009301120	0	0	11,109107752	18 08007/853	4,520055051	-
	58	0 133464771	0 131429703	ő	0	0 29981 5008	ő	õ	õ	11 29981 5008	18 761034187	4 172585518	-
	59	0 133464771	0 133915477	2 823744e+006	õ	0	0.068957618	õ	õ	10 879331531	19 068957618	4 243877633	
	60	0.133464771	0.132605426	0	0	0 106318484	0	õ	0	11 106318484	18,887372658	4.198885537	
	60	0.133464771	0.158598044	5 352048e+006	0.022598044	0	õ	õ	õ	7.043133998	17.682416783	7.810797102	
	61	0,133464771	0,133464771	0	0	0	0	0	0	10,985370692	18,722158771	4,334505474	
						An a barra barra							-
	Curves					Apply values to	o parameters						
	Select para	meters										Show cur	ves
-													
	Run optimiz	ation											
	OK Anny Concell										Cancel		
200	OK Cancer												

Slika 60. Tablica s rezultatima treće optimizacije

Zbog ne slaganja u rezultatima ponovljena je analiza konačnih elemenata za dimenzije dobivene optimiranjem. Rezultati su identični onima koji se vide na slici. (Slika 59)

Ali povratkom na radno okruženje "Product Engineering Optimizer" i u optimizaciju, na kartici "Constraints" vidi se kako uvjet ipak nije zadovoljen bez obzira što i dalje na kartici "Computation results" stoje isti rezultati (Slika 61).

timization						2
Problem C	Constraints Computations results					
Name	Body	Satisfied	Distance to satisfac	. Precisi	Activity	Weight
Constraint.13	`Finite Element Model.1\Maximum Von Mises.2\Maximum Von Mises` <1.4e+008N_m2	No	568960N_m2	0N_m2	True	1
Constraint.14	`Vilicasti nosac\InertiaVolume.1\Mass` <=0.136kg	Yes	0kg	0kg	True	1
Constraint.15	Vilicasti nosac\dubina utoral <11mm	Yes	0mm	0mm	True	1
Constraint.10	Vilicasti nosac\veliki r <=19mm	Yes	0mm	0mm	True	1
Constraint 18	Vilicasti nosac\veliki r` - 'Vilicasti nosac\mali r` >0mm	Ves	0mm	0mm	True	1
constraintizo		103			mac	-
	1 1					
New New	(derivatives provider) Delete					
- Constraint de	finition					
Name:	antroint 12					
	instraint.15					
Comment:						
Satisfied: 🎖	Activity: True			Weight:	1	
Body: Edit						
'Finite Elemen	t Model.1\Maximum.Von.Mises.2\Maximum.Von.Mises`<1.4e+008N_m2					
Precision: 0N	_m2 🚽					
Run optimizati	on					
				ок	Apply	🕒 🕒 Car
			_			_

Slika 61. Rezultati nakon ponovljene FEM analize

Tu se vidi kako ponekad nije jednostavno doći do traženog rješenja, te da je potrebno vratiti se korak u nazad (u ovom slučaju analiza konačnih elemenata) da bi se dodatno provjerili rezultati.

U ovom primjeru jedino je druga optimizacija dala željene rezultate. Time se pokazalo da i davanje prioriteta ograničenjima ima utjecaj na konačni rezultat.
4. ZAKLJUČAK

Optimiranje konstrukcije u svrhu smanjenja mase je vrlo zahtjevan posao. Potrebno je veliko predznanje i iskustvo kako bi optimizacijom došli do optimalnih parametara konstrukcije.

Vrlo je bitno kod same optimizacije konstrukcije s naglaskom na smanjene mase da se sačuvaju prvobitni ulazni parametri tj. funkcionalnost konstrukcije. Važno je definirati ulazne parametre tj. dimenzije koje se mogu mijenjati, a da se pri tome ne gube prvobitna funkcionalna svojstva modela

CATIA modul za optimizaciju bez obzira što ima samo dio mogućnosti optimiranja, u usporedbi s nekim drugim programskim paketima, nudi veliki spektar opcija kako doći do željenog rješenja.

Kombiniranjem različitih postavki od vrste algoritma, brzine optimiranja, pa do dodavanja na važnosti pojedinih ograničenja za isti problem moguće je dobiti različite rezultate. Zbog toga je bitno razumjeti što koja od postavki točno znači, te kako izabrati najbolju kombinaciju za postići najbolji rezultat.

PRILOZI

I. CD-R disk

LITERATURA

- [1] Fred Karam, Charles Kleismit: CATIA V5, Kompjuter biblioteka Beograd, 2004.
- [2] http://catia-v5-cad.blogspot.hr/2013/03/catia-v5-cad-cam-introduction.html
- [3] <u>http://catiadesign.org/_doc/v5r14/catpdfkwoug_C2/kwoug.pdf</u>
- [4] <u>http://4dmsco.com/solutions/catia/catia-v5-plm-express-cat/catia-v5-plm-express-optimize-and-review/catia-v5-knowledge-expert-and-engineering-optimization-kox/</u>

[5] <u>http://mbi-wiki.uni-wuppertal.de/wp-content/uploads/2011/06/Product-</u> engineering-optimisation-using-CATIA-V5.pdf

[6] CadCam Design Centar: CATIA V5 Knjiga 3, Ljubljana,2003.